Tissue
tissue
Latest
The Equation of State of a Tissue
An equation of state is something you hear about in introductory thermodynamics, for example, the Ideal gas equation. The ideal gas equation relates the pressure, volume, and the number of particles of the gas, to its temperature, uniquely defining its state. This description is possible in physics when the system under investigation is in equilibrium or near equilibrium. In biology, a tissue is modeled as a fluid composed of cells. These cells are constantly interacting with each other through mechanical and chemical signaling, driving them far from equilibrium. Can an equation of state exist for such a messy interacting system? In this talk, I show that the presence of strong cell-cell interaction in tissues gives rise to a novel non-equilibrium, size-dependent surface tension, something unheard of for classical fluids. This surface tension, in turn, modifies the packing of cells inside the tissue generating a size-dependent density and pressure. Finally, we show that a combination of these non-equilibrium pressure and densities can yield an equation of state for biological tissues arbitrarily far from equilibrium. In the end, I discuss how this new paradigm of size-dependent biological properties gives rise to novel modes of cellular motion in tissues
Non-regular behavior during the coalescence of liquid-like cellular aggregates
The fusion of cell aggregates widely exists during biological processes such as development, tissue regeneration, and tumor invasion. Cellular spheroids (spherical cell aggregates) are commonly used to study this phenomenon. In previous studies, with approximated assumptions and measurements, researchers found that the fusion of two spheroids with some cell type is similar to the coalescence of two liquid droplets. However, with more accurate measurements focusing on the overall shape evolution in this process, we find that even in the previously-regarded liquid-like regime, the fusion process of spheroids can be very different from regular liquid coalescence. We conduct numerical simulations using both standard particulate models and vertex models with both Molecular Dynamics and Brownian Dynamics. The simulation results show that the difference between spheroids and regular liquid droplets is caused by the microscopic overdamped dynamics of each cell rather than the topological cell-cell interactions in the vertex model. Our research reveals the necessity of a new continuum theory for “liquid” with microscopically overdamped components, such as cellular and colloidal systems. Detailed analysis of our simulation results of different system sizes provides the basis for developing the new theory.
Making a Mesh of Things: Using Network Models to Understand the Mechanics of Heterogeneous Tissues
Networks of stiff biopolymers are an omnipresent structural motif in cells and tissues. A prominent modeling framework for describing biopolymer network mechanics is rigidity percolation theory. This theory describes model networks as nodes joined by randomly placed, springlike bonds. Increasing the amount of bonds in a network results in an abrupt, dramatic increase in elastic moduli above a certain threshold – an example of a mechanical phase transition. While homogeneous networks are well studied, many tissues are made of disparate components and exhibit spatial fluctuations in the concentrations of their constituents. In this talk, I will first discuss recent work in which we explained the structural basis of the shear mechanics of healthy and chemically degraded cartilage by coupling a rigidity percolation framework with a background gel. Our model takes into account collagen concentration, as well as the concentration of peptidoglycans in the surrounding polyelectrolyte gel, to produce a structureproperty relationship that describes the shear mechanics of both sound and diseased cartilage. I will next discuss the introduction of structural correlation in constructing networks, such that sparse and dense patches emerge. I find moderate correlation allows a network to become rigid with fewer bonds, while this benefit is partly erased by excessive correlation. We explain this phenomenon through analysis of the spatial fluctuations in strained networks’ displacement fields. Finally, I will address our work’s implications for non-invasive diagnosis of pathology, as well as rational design of prostheses and novel soft materials.
Retinal neurogenesis and lamination: What to become, where to become it and how to move from there!
The vertebrate retina is an important outpost of the central nervous system, responsible for the perception and transmission of visual information. It consists of five different types of neurons that reproducibly laminate into three layers, a process of crucial importance for the organ’s function. Unsurprisingly, impaired fate decisions as well as impaired neuronal migrations and lamination lead to impaired retinal function. However, how processes are coordinated at the cellular and tissue level and how variable or robust retinal formation is, is currently still underexplored. In my lab, we aim to shed light on these questions from different angles, studying on the one hand differentiation phenomena and their variability and on the other hand the downstream migration and lamination phenomena. We use zebrafish as our main model system due to its excellent possibilities for live imaging and quantitative developmental biology. More recently we also started to use human retinal organoids as a comparative system. We further employ cross disciplinary approaches to address these issues combining work of cell and developmental biology, biomechanics, theory and computer science. Together, this allows us to integrate cell with tissue-wide phenomena and generate an appreciation of the reproducibility and variability of events.
Making connections: how epithelial tissues guarantee folding
Tissue folding is a ubiquitous shape change event during development whereby a cell sheet bends into a curved 3D structure. This mechanical process is remarkably robust, and the correct final form is almost always achieved despite internal fluctuations and external perturbations inherent in living systems. While many genetic and molecular strategies that lead to robust development have been established, much less is known about how mechanical patterns and movements are ensured at the population level. I will describe how quantitative imaging, physical modeling and concepts from network science can uncover collective interactions that govern tissue patterning and shape change. Actin and myosin are two important cytoskeletal proteins involved in the force generation and movement of cells. Both parts of this talk will be about the spontaneous organization of actomyosin networks and their role in collective tissue dynamics. First, I will present how out-of-plane curvature can trigger the global alignment of actin fibers and a novel transition from collective to individual cell migration in culture. I will then describe how tissue-scale cytoskeletal patterns can guide tissue folding in the early fruit fly embryo. I will show that actin and myosin organize into a network that spans a domain of the embryo that will fold. Redundancy in this supracellular network encodes the tissue’s intrinsic robustness to mechanical and molecular perturbations during folding.
Tutorial talk: Ciliated tissues from form to function
3D Printing Cellular Communities: Mammalian Cells, Bacteria, And Beyond
While the motion and collective behavior of cells are well-studied on flat surfaces or in unconfined liquid media, in most natural settings, cells thrive in complex 3D environments. Bioprinting processes are capable of structuring cells in 3D and conventional bioprinting approaches address this challenge by embedding cells in bio-degradable polymer networks. However, heterogeneity in network structure and biodegradation often preclude quantitative studies of cell behavior in specified 3D architectures. Here, I will present a new approach to 3D bioprinting of cellular communities that utilizes jammed, granular polyelectrolyte microgels as a support medium. The self-healing nature of this medium allows the creation of highly precise cellular communities and tissue-like structures by direct injection of cells inside the 3D medium. Further, the transparent nature of this medium enables precise characterization of cellular behavior. I will describe two examples of my work using this platform to study the behavior of two different classes of cells in 3D. First, I will describe how we interrogate the growth, viability, and migration of mammalian cells—ranging from epithelial cells, cancer cells, and T cells—in the 3D pore space. Second, I will describe how we interrogate the migration of E. coli bacteria through the 3D pore space. Direct visualization enables us to reveal a new mode of motility exhibited by individual cells, in stark contrast to the paradigm of run-and-tumble motility, in which cells are intermittently and transiently trapped as they navigate the pore space; further, analysis of these dynamics enables prediction of single-cell transport over large length and time scales. Moreover, we show that concentrated populations of E. coli can collectively migrate through a porous medium—despite being strongly confined—by chemotactically “surfing” a self-generated nutrient gradient. Together, these studies highlight how the jammed microgel medium provides a powerful platform to design and interrogate complex cellular communities in 3D—with implications for tissue engineering, microtissue mechanics, studies of cellular interactions, and biophysical studies of active matter.
Making connections: how epithelial tissues guarantee folding
How can we learn from nature to build better polymer composites?
Nature is replete with extraordinary materials that can grow, move, respond, and adapt. In this talk I will describe our ongoing efforts to develop advanced polymeric materials, inspired by nature. First, I will describe my group’s efforts to develop ultrastiff, ultratough materials inspired by the byssal materials of marine mussels. These adhesive contacts allow mussels to secure themselves to rocks, wood, metals and other surfaces in the harsh conditions of the intertidal zone. By developing a foundational understanding of the structure-mechanics relationships and processing of the natural system, we can design high-performance materials that are extremely strong without compromising extensibility, as well as macroporous materials with tunable toughness and strength. In the second half of the talk, I will describe new efforts to exploit light as a means of remote control and power. By leveraging the phototransduction pathways of highly-absorbing, negatively photochromic molecules, we can drive the motion of amorphous polymeric materials as well as liquid flows. These innovations enable applications in packaging, connective tissue repair, soft robotics, and optofluidics.
Tissue fluidization at the onset of zebrafish gastrulation
Embryo morphogenesis is impacted by dynamic changes in tissue material properties, which have been proposed to occur via processes akin phase transitions (PTs). Here, we show that rigidity percolation provides a simple and robust theoretical framework to predict material/structural PTs of embryonic tissues from local cell connectivity. By using percolation theory, combined with directly monitoring dynamic changes in tissue rheology and cell contact mechanics, we demonstrate that the zebrafish blastoderm undergoes a genuine rigidity PT, brought about by a small reduction in adhesion-dependent cell connectivity below a critical value. We quantitatively predict and experimentally verify hallmarks of PTs, including power-law exponents and associated discontinuities of macroscopic observables at criticality. Finally, we show that this uniform PT depends on blastoderm cells undergoing meta-synchronous divisions causing random and, consequently, uniform changes in cell connectivity. Collectively, our theoretical and experimental findings reveal the structural basis of material PTs in an organismal context.
Non-equilibrium molecular assembly in reshaping and cutting cells
A key challenge in modern soft matter is to identify the principles that govern the organisation and functionality in non-equilibrium systems. Current research efforts largely focus on non-equilibrium processes that occur either at the single-molecule scale (e.g. protein and DNA conformations under driving forces), or at the scale of whole tissues, organisms, and active colloidal and microscopic objects. However, the range of the scales in-between — from molecules to large-scaled molecular assemblies that consume energy and perform work — remains under-explored. This is, nevertheless, the scale that is crucial for the function of a living cell, where molecular self-assembly driven far from equilibrium produces mechanical work needed for cell reshaping, transport, motility, division, and healing. Today I will discuss physical modelling of active elastic filaments, called ESCRT-III filaments, that dynamically assemble and disassemble on cell membranes. This dynamic assembly changes the filaments’ shape and mechanical properties and leads to the remodelling and cutting of cells. I will present a range of experimental comparisons of our simulation results: from ESCRT-III-driven trafficking in eukaryotes to division of evolutionary simple archaeal cells.
Ductile-to-brittle transitions in the tissues of a simple animal
“The Mechanics of Non-Equilibrium Soft Interfaces”
At small length-scales, capillary effects are significant, and thus the mechanics of soft material interfaces may be dominated by solid surface stresses or liquid surface tensions. The balance between surface and bulk properties is described by an elasto-capillary length-scale, in which equilibrium interfacial energies are constant. However, at small length-scales in biological materials, including living cells and tissues, interfacial energies are not constant but are actively regulated and driven far from equilibrium. Thus, the balance between surface and bulk properties depends upon the distance from equilibrium. Here, we model the spreading (wetting) of living cell aggregates as ‘active droplets’, with a non-equilibrium surface tension that depends upon internal stress generated by the actomyosin cytoskeleton. Depending upon the extent of activity, droplet surface properties adapt to the mechanics of their surroundings. The impact of this adaptation challenges contemporary models of interfacial mechanics, including extensively used models of contact mechanics and wetting.
“Life in a Tight Spot: How Bacteria Move in Heterogeneous Media”
Bacterial motility is central to processes in agriculture, the environment, and medicine. While motility is typically studied in homogeneous environments, many bacterial habitats—e.g., soils, sediments, and biological gels/tissues—are heterogeneous porous media. Here, through studies of E. coli in transparent 3D porous media, we demonstrate that confinement in a heterogeneous medium fundamentally alters motility. In particular, we show how the paradigm of run-and-tumble motility is dramatically altered by pore-scale confinement, both for cells performing undirected motion and those performing chemotaxis, directed motion in response to a chemical stimulus. Our porous media also enable precisely structured multi-cellular communities to be 3D printed. Using this capability, we show how confinement-dependent chemotaxis enables populations to stabilize large-scale perturbations in their overall morphology. Together, our work thus reveals new principles to predict and control the behavior of bacteria, and active matter in general, in heterogeneous environments.
“Rigidity and Fluidity in Biological Tissue”
The coordinated migration of groups of cells underlies many biological processes, including embryo development, wound healing and cancer metastasis. In many of these situations, tissues are able to tune themselves between liquid-like states, where cells flow collectively as in a liquid, and solid-like states that can support shear stresses. In this talk I will describe mesoscopic models of cell assemblies inspired by active matter physics to examine the roles of cell motility, cell crowding and the interplay of contractility and adhesion in controlling the rheological state of biological tissue.
Physics of Living Matter 15
Over the past five years, our understanding of how mechanical processes act across multiple scales to direct morphogenesis has advanced significantly. Yet, there remain numerous open questions, including the role of mechanics in tissue shaping, cancer dissemination, and cellular aging. The From Molecules to Organs:The Mechanobiology of Morphogenesis conference will bring together world leaders in the fields of mechanobiology and morphogenesis. The three-day conference will span scales, from single molecules up to whole organisms.
Physics of Living Matter 15
Over the past five years, our understanding of how mechanical processes act across multiple scales to direct morphogenesis has advanced significantly. Yet, there remain numerous open questions, including the role of mechanics in tissue shaping, cancer dissemination, and cellular aging. The From Molecules to Organs:The Mechanobiology of Morphogenesis conference will bring together world leaders in the fields of mechanobiology and morphogenesis. The three-day conference will span scales, from single molecules up to whole organisms.
Motility-dependent pathogenicity of a spirochetal bacterium
Motility is a crucial virulence factor for many species of bacteria, but it is not fully understood how bacterial motility is practically involved in pathogenicity. This time I will give a talk on the association of motility with pathogenicity in the zoonotic spirochete bacterium Leptospira. Recently, we measured swimming force of individual leptospires using optical tweezers and found that they can generate ~30 times of the swimming force of E. coli. We also observed that leptospires increase the reversal frequency of swimming at the gel-liquid interface, resembling host dermis exposed to contaminated water (Abe et al., 2020, Sci Rep). These could be involved in percutaneous infection of the spirochete. We have shown that Leptospira not only swims in liquid but also moves over solid surfaces (Tahara et al., 2018, Sci Adv). We quantified the surface motility called “crawling” on cultured kidney tissues from various mammals, showing that pathogenic leptospires crawl over the tissue surfaces more persistently that non-pathogenic ones (Xu et al., 2020, Front Microbiol). I will discuss the spirochete motility related to pathogenicity from the biophysical viewpoint.
Measuring protein and lipid mass in single cells in tissue environment
“Cell Surface Topography: The Role of Protein Size at Cell-Cell Interfaces”
Membrane interfaces formed at junctions between cells are often associated with characteristic patterns of membrane protein organization, such as in epithelial tissues and between cells of the immune system. While this organization can be influenced by receptor clustering, lipid domain formation, and cytoskeletal dynamics, this talk will describe how cell surface molecular height can directly contribute to the spatial arrangement of membrane proteins and downstream signaling. Using a new optical method for characterizing molecular height, together with experiments using giant vesicles in vitro systems and live immune cells, we are investigating how cell surface molecular heights can be key contributors to cell-cell communication.
Flow, fluctuate and freeze: Epithelial cell sheets as soft active matter
Epithelial cell sheets form a fundamental role in the developing embryo, and also in adult tissues including the gut and the cornea of the eye. Soft and active matter provides a theoretical and computational framework to understand the mechanics and dynamics of these tissues.I will start by introducing the simplest useful class of models, active brownian particles (ABPs), which incorporate uncoordinated active crawling over a substrate and mechanical interactions. Using this model, I will show how the extended ’swirly’ velocity fluctuations seen in sheets on a substrate can be understood using a simple model that couples linear elasticity with disordered activity. We are able to quantitatively match experiments using in-vitro corneal epithelial cells.Adding a different source of activity, cell division and apoptosis, to such a model leads to a novel 'self-melting' dense fluid state. Finally, I will discuss a direct application of this simple particle-based model to the steady-state spiral flow pattern on the mouse cornea.
Biochemical, mechanical and geometrical information in tissue morphogenesis
Untitled Seminar
The symposium provides an opportunity for ECRs working in biophysical research to get together and to share their research. Although the symposium is primarily aimed at ECRs, we welcome everyone with an interest in biophysical sciences to join in the lively discussions and questions. This half day symposium will feature short talks and flash-talks from a range of ECRs around the biophysics theme. Afterwards there will be a virtual poster session with open discussions. We warmly invite both domestic and international ECRs to present at/attend this event.
tissue coverage
23 items