Latest

SeminarPsychology

Digital Traces of Human Behaviour: From Political Mobilisation to Conspiracy Narratives

Lukasz Piwek
University of Bath & Cumulus Neuroscience Ltd
Jul 7, 2025

Digital platforms generate unprecedented traces of human behaviour, offering new methodological approaches to understanding collective action, polarisation, and social dynamics. Through analysis of millions of digital traces across multiple studies, we demonstrate how online behaviours predict offline action: Brexit-related tribal discourse responds to real-world events, machine learning models achieve 80% accuracy in predicting real-world protest attendance from digital signals, and social validation through "likes" emerges as a key driver of mobilization. Extending this approach to conspiracy narratives reveals how digital traces illuminate psychological mechanisms of belief and community formation. Longitudinal analysis of YouTube conspiracy content demonstrates how narratives systematically address existential, epistemic, and social needs, while examination of alt-tech platforms shows how emotions of anger, contempt, and disgust correlate with violence-legitimating discourse, with significant differences between narratives associated with offline violence versus peaceful communities. This work establishes digital traces as both methodological innovation and theoretical lens, demonstrating that computational social science can illuminate fundamental questions about polarisation, mobilisation, and collective behaviour across contexts from electoral politics to conspiracy communities.

SeminarPsychology

Error Consistency between Humans and Machines as a function of presentation duration

Thomas Klein
Eberhard Karls Universität Tübingen
Jul 1, 2024

Within the last decade, Deep Artificial Neural Networks (DNNs) have emerged as powerful computer vision systems that match or exceed human performance on many benchmark tasks such as image classification. But whether current DNNs are suitable computational models of the human visual system remains an open question: While DNNs have proven to be capable of predicting neural activations in primate visual cortex, psychophysical experiments have shown behavioral differences between DNNs and human subjects, as quantified by error consistency. Error consistency is typically measured by briefly presenting natural or corrupted images to human subjects and asking them to perform an n-way classification task under time pressure. But for how long should stimuli ideally be presented to guarantee a fair comparison with DNNs? Here we investigate the influence of presentation time on error consistency, to test the hypothesis that higher-level processing drives behavioral differences. We systematically vary presentation times of backward-masked stimuli from 8.3ms to 266ms and measure human performance and reaction times on natural, lowpass-filtered and noisy images. Our experiment constitutes a fine-grained analysis of human image classification under both image corruptions and time pressure, showing that even drastically time-constrained humans who are exposed to the stimuli for only two frames, i.e. 16.6ms, can still solve our 8-way classification task with success rates way above chance. We also find that human-to-human error consistency is already stable at 16.6ms.

SeminarPsychology

Face and voice perception as a tool for characterizing perceptual decisions and metacognitive abilities across the general population and psychosis spectrum

Léon Franzen
University of Luebeck
Apr 26, 2023

Humans constantly make perceptual decisions on human faces and voices. These regularly come with the challenge of receiving only uncertain sensory evidence, resulting from noisy input and noisy neural processes. Efficiently adapting one’s internal decision system including prior expectations and subsequent metacognitive assessments to these challenges is crucial in everyday life. However, the exact decision mechanisms and whether these represent modifiable states remain unknown in the general population and clinical patients with psychosis. Using data from a laboratory-based sample of healthy controls and patients with psychosis as well as a complementary, large online sample of healthy controls, I will demonstrate how a combination of perceptual face and voice recognition decision fidelity, metacognitive ratings, and Bayesian computational modelling may be used as indicators to differentiate between non-clinical and clinical states in the future.

SeminarPsychology

Computational Models of Fine-Detail and Categorical Information in Visual Working Memory: Unified or Separable Representations?

Timothy J Ricker
University of South Dakota
Nov 22, 2021

When we remember a stimulus we rarely maintain a full fidelity representation of the observed item. Our working memory instead maintains a mixture of the observed feature values and categorical/gist information. I will discuss evidence from computational models supporting a mix of categorical and fine-detail information in working memory. Having established the need for two memory formats in working memory, I will discuss whether categorical and fine-detailed information for a stimulus are represented separately or as a single unified representation. Computational models of these two potential cognitive structures make differing predictions about the pattern of responses in visual working memory recall tests. The present study required participants to remember the orientation of stimuli for later reproduction. The pattern of responses are used to test the competing representational structures and to quantify the relative amount of fine-detailed and categorical information maintained. The effects of set size, encoding time, serial order, and response order on memory precision, categorical information, and guessing rates are also explored. (This is a 60 min talk).

SeminarPsychology

Exploring perceptual similarity and its relation to image-based spaces: an effect of familiarity

Rosyl Somai
University of Stirling
Aug 12, 2021

One challenge in exploring the internal representation of faces is the lack of controlled stimuli transformations. Researchers are often limited to verbalizable transformations in the creation of a dataset. An alternative approach to verbalization for interpretability is finding image-based measures that allow us to quantify image transformations. In this study, we explore whether PCA could be used to create controlled transformations to a face by testing the effect of these transformations on human perceptual similarity and on computational differences in Gabor, Pixel and DNN spaces. We found that perceptual similarity and the three image-based spaces are linearly related, almost perfectly in the case of the DNN, with a correlation of 0.94. This provides a controlled way to alter the appearance of a face. In experiment 2, the effect of familiarity on the perception of multidimensional transformations was explored. Our findings show that there is a positive relationship between the number of components transformed and both the perceptual similarity and the same three image-based spaces used in experiment 1. Furthermore, we found that familiar faces are rated more similar overall than unfamiliar faces. That is, a change to a familiar face is perceived as making less difference than the exact same change to an unfamiliar face. The ability to quantify, and thus control, these transformations is a powerful tool in exploring the factors that mediate a change in perceived identity.

SeminarPsychology

Characterising the brain representations behind variations in real-world visual behaviour

Simon Faghel-Soubeyrand
Université de Montréal
Aug 5, 2021

Not all individuals are equally competent at recognizing the faces they interact with. Revealing how the brains of different individuals support variations in this ability is a crucial step to develop an understanding of real-world human visual behaviour. In this talk, I will present findings from a large high-density EEG dataset (>100k trials of participants processing various stimulus categories) and computational approaches which aimed to characterise the brain representations behind real-world proficiency of “super-recognizers”—individuals at the top of face recognition ability spectrum. Using decoding analysis of time-resolved EEG patterns, we predicted with high precision the trial-by-trial activity of super-recognizers participants, and showed that evidence for face recognition ability variations is disseminated along early, intermediate and late brain processing steps. Computational modeling of the underlying brain activity uncovered two representational signatures supporting higher face recognition ability—i) mid-level visual & ii) semantic computations. Both components were dissociable in brain processing-time (the first around the N170, the last around the P600) and levels of computations (the first emerging from mid-level layers of visual Convolutional Neural Networks, the last from a semantic model characterising sentence descriptions of images). I will conclude by presenting ongoing analyses from a well-known case of acquired prosopagnosia (PS) using similar computational modeling of high-density EEG activity.

SeminarPsychology

The contribution of the dorsal visual pathway to perception and action

Erez Freud
York University
Apr 29, 2021

The human visual system enables us to recognize objects (e.g., this is a cup) and act upon them (e.g., grasp the cup) with astonishing ease and accuracy. For decades, it was widely accepted that these different functions rely on two separated cortical pathways. The ventral occipitotemporal pathway subserves object recognition, while the dorsal occipitoparietal pathway promotes visually guided actions. In my talk, I will discuss recent evidence from a series of neuropsychological, developmental and neuroimaging studies that were aimed to explore the nature of object representations in the dorsal pathway. The results from these studies highlight the plausible role of the dorsal pathway in object perception and reveal an interplay between shape representations derived by the two pathways. Together, these findings challenge the binary distinction between the two pathways and are consistent with the view that object recognition is not the sole product of ventral pathway computations, but instead relies on a distributed network of regions.

SeminarPsychology

A Manifesto for Big Team Science

Patrick S Forscher
Université Grenoble Alpes
Mar 11, 2021

Progress in psychology has been frustrated by challenges concerning replicability, generalizability, strategy selection, inferential reproducibility, and computational reproducibility. Although often discussed separately, I argue that these five challenges share a common cause: insufficient investment of resources into the typical psychology study. I further suggest that big team science can help address these challenges by allowing researchers to pool their resources to efficiently and drastically increase the amount of resources available for a single study. However, the current incentives, infrastructure, and institutions in academic science have all developed under the assumption that science is conducted by solo Principal Investigators and their dependent trainees. These barriers must be overcome if big team science is to be sustainable. Big team science likely also carries unique risks, such as the potential for big team science institutions to monopolize power, become overly conservative, make mistakes at a grand scale, or fail entirely due to mismanagement and a lack of financial sustainability. I illustrate the promise, barriers, and risks of big team science with the experiences of the Psychological Science Accelerator, a global research network of over 1400 members from 70+ countries.

Computation coverage

9 items

Seminar9
Domain spotlight

Explore how Computation research is advancing inside Psychology.

Visit domain