eye movements
Latest
Perception during visual disruptions
Visual perception is perceived as continuous despite frequent disruptions in our visual environment. For example, internal events, such as saccadic eye-movements, and external events, such as object occlusion temporarily prevent visual information from reaching the brain. Combining evidence from these two models of visual disruption (occlusion and saccades), we will describe what information is maintained and how it is updated across the sensory interruption. Lina Teichmann will focus on dynamic occlusion and demonstrate how object motion is processed through perceptual gaps. Grace Edwards will then describe what pre-saccadic information is maintained across a saccade and how it interacts with post-saccadic processing in retinotopically relevant areas of the early visual cortex. Both occlusion and saccades provide a window into how the brain bridges perceptual disruptions. Our evidence thus far suggests a role for extrapolation, integration, and potentially suppression in both models. Combining evidence from these typically separate fields enables us to determine if there is a set of mechanisms which support visual processing during visual disruptions in general.
Exploring Memories of Scenes
State-of-the-art machine vision models can predict human recognition memory for complex scenes with astonishing accuracy. In this talk I present work that investigated how memorable scenes are actually remembered and experienced by human observers. We found that memorable scenes were recognized largely based on recollection of specific episodic details but also based on familiarity for an entire scene. I thus highlight current limitations in machine vision models emulating human recognition memory, with promising opportunities for future research. Moreover, we were interested in what observers specifically remember about complex scenes. We thus considered the functional role of eye-movements as a window into the content of memories, particularly when observers recollected specific information about a scene. We found that when observers formed a memory representation that they later recollected (compared to scenes that only felt familiar), the overall extent of exploration was broader, with a specific subset of fixations clustered around later to-be-recollected scene content, irrespective of the memorability of a scene. I discuss the critical role that our viewing behavior plays in visual memory formation and retrieval and point to potential implications for machine vision models predicting the content of human memories.
eye movements coverage
2 items