Latest

SeminarPsychology

Understanding and Mitigating Bias in Human & Machine Face Recognition

John Howard
Maryland Test Facility
Apr 12, 2023

With the increasing use of automated face recognition (AFR) technologies, it is important to consider whether these systems not only perform accurately, but also equitability or without “bias”. Despite rising public, media, and scientific attention to this issue, the sources of bias in AFR are not fully understood. This talk will explore how human cognitive biases may impact our assessments of performance differentials in AFR systems and our subsequent use of those systems to make decisions. We’ll also show how, if we adjust our definition of what a “biased” AFR algorithm looks like, we may be able to create algorithms that optimize the performance of a human+algorithm team, not simply the algorithm itself.

SeminarPsychology

Forensic use of face recognition systems for investigation

Maëlig Jacquet
University of Lausanne
Apr 11, 2022

With the increasing development of automatic systems and artificial intelligence, face recognition is becoming increasingly important in forensic and civil contexts. However, face recognition has yet to be thoroughly empirically studied to provide an adequate scientific and legal framework for investigative and court purposes. This observation sets the foundation for the research. We focus on issues related to face images and the use of automatic systems. Our objective is to validate a likelihood ratio computation methodology for interpreting comparison scores from automatic face recognition systems (score-based likelihood ratio, SLR). We collected three types of traces: portraits (ID), video surveillance footage recorded by ATM and by a wide-angle camera (CCTV). The performance of two automatic face recognition systems is compared: the commercial IDEMIA Morphoface (MFE) system and the open source FaceNet algorithm.

SeminarPsychology

Characterising the brain representations behind variations in real-world visual behaviour

Simon Faghel-Soubeyrand
Université de Montréal
Aug 5, 2021

Not all individuals are equally competent at recognizing the faces they interact with. Revealing how the brains of different individuals support variations in this ability is a crucial step to develop an understanding of real-world human visual behaviour. In this talk, I will present findings from a large high-density EEG dataset (>100k trials of participants processing various stimulus categories) and computational approaches which aimed to characterise the brain representations behind real-world proficiency of “super-recognizers”—individuals at the top of face recognition ability spectrum. Using decoding analysis of time-resolved EEG patterns, we predicted with high precision the trial-by-trial activity of super-recognizers participants, and showed that evidence for face recognition ability variations is disseminated along early, intermediate and late brain processing steps. Computational modeling of the underlying brain activity uncovered two representational signatures supporting higher face recognition ability—i) mid-level visual & ii) semantic computations. Both components were dissociable in brain processing-time (the first around the N170, the last around the P600) and levels of computations (the first emerging from mid-level layers of visual Convolutional Neural Networks, the last from a semantic model characterising sentence descriptions of images). I will conclude by presenting ongoing analyses from a well-known case of acquired prosopagnosia (PS) using similar computational modeling of high-density EEG activity.

SeminarPsychology

Investigating visual recognition and the temporal lobes using electrophysiology and fast periodic visual stimulation

Angelique Volfart
University of Louvain
Jun 24, 2021

The ventral visual pathway extends from the occipital to the anterior temporal regions, and is specialized in giving meaning to objects and people that are perceived through vision. Numerous studies in functional magnetic resonance imaging have focused on the cerebral basis of visual recognition. However, this technique is susceptible to magnetic artefacts in ventral anterior temporal regions and it has led to an underestimation of the role of these regions within the ventral visual stream, especially with respect to face recognition and semantic representations. Moreover, there is an increasing need for implicit methods assessing these functions as explicit tasks lack specificity. In this talk, I will present three studies using fast periodic visual stimulation (FPVS) in combination with scalp and/or intracerebral EEG to overcome these limitations and provide high SNR in temporal regions. I will show that, beyond face recognition, FPVS can be extended to investigate semantic representations using a face-name association paradigm and a semantic categorisation paradigm with written words. These results shed new light on the role of temporal regions and demonstrate the high potential of the FPVS approach as a powerful electrophysiological tool to assess various cognitive functions in neurotypical and clinical populations.

SeminarPsychology

Getting to know you: emerging neural representations during face familiarization

Gyula Kovács
Friedrich-Schiller University Jena
Jun 17, 2021

The successful recognition of familiar persons is critical for social interactions. Despite extensive research on the neural representations of familiar faces, we know little about how such representations unfold as someone becomes familiar. In three EEG experiments, we elucidated how representations of face familiarity and identity emerge from different qualities of familiarization: brief perceptual exposure (Experiment 1), extensive media familiarization (Experiment 2) and real-life personal familiarization (Experiment 3). Time-resolved representational similarity analysis revealed that familiarization quality has a profound impact on representations of face familiarity: they were strongly visible after personal familiarization, weaker after media familiarization, and absent after perceptual familiarization. Across all experiments, we found no enhancement of face identity representation, suggesting that familiarity and identity representations emerge independently during face familiarization. Our results emphasize the importance of extensive, real-life familiarization for the emergence of robust face familiarity representations, constraining models of face perception and recognition memory.

SeminarPsychology

Algorithmic advances in face matching: Stability of tests in atypical groups

Mirta Stantic
Department of Experimental Psychology, University of Oxford
Feb 18, 2021

Face matching tests have traditionally been developed to assess human face perception in the neurotypical range, but methods that underlie their development often make it difficult for these measures to be applied in atypical populations (developmental prosopagnosics, super recognizers) due to unadjusted difficulty. We have recently presented the development of the Oxford Face Matching Test, a measure that bases individual item-difficulty on algorithmically derived similarity of presented stimuli. The measure seems useful as it can be given online or in-laboratory, has good discriminability and high test-retest reliability in the neurotypical groups. In addition, it has good validity in separating atypical groups at either of the spectrum ends. In this talk, I examine the stability of the OFMT and other traditionally used measures in atypical groups. On top of the theoretical significance of determining whether reliability of tests is equivalent in atypical population, this is an important question because of the practical concerns of retesting the same participants across different lab groups. Theoretical and practical implications for further test development and data sharing are discussed.

face recognition coverage

7 items

Seminar7
Domain spotlight

Explore how face recognition research is advancing inside Psychology.

Visit domain