flexibility
Latest
Where Cognitive Neuroscience Meets Industry: Navigating the Intersections of Academia and Industry
In this talk, Mirta will share her journey from her education a mathematically-focused high school to her currently unconventional career in London, emphasizing the evolution from a local education in Croatia to international experiences in the US and UK. We will explore the concept of interdisciplinary careers in the modern world, viewing them through the framework of increasing demand, flexibility, and dynamism in the current workplace. We will underscore the significance of interdisciplinary research for launching careers outside of academia, and bolstering those within. I will challenge the conventional norm of working either in academia or industry, and encourage discussion about the opportunities for combining the two in a myriad of career opportunities. I’ll use examples from my own and others’ research to highlight opportunities for early career researchers to extend their work into practical applications. Such an approach leverages the strengths of both sectors, fostering innovation and practical applications of research findings. I hope these insights can offer valuable perspectives for those looking to navigate the evolving demands of the global job market, illustrating the advantages of a versatile skill set that spans multiple disciplines and allows extensions into exciting career options.
Removing information from working memory
Holding information in working memory is essential for cognition, but removing unwanted thoughts is equally important. There is great flexibility in how we can manipulate information in working memory, but the processes and consequences of these operations are poorly understood. In this talk I will discuss our recent findings using multivariate pattern analyses of fMRI brain data to demonstrate the successful removal of information from working memory using three different strategies: suppressing a specific thought, replacing a thought with a different one, and clearing the mind of all thought. These strategies are supported by distinct brain regions and have differential consequences on the encoding of new information. I will discuss implications of these results on theories of memory and I will highlight some new directions involving the use of real-time neurofeedback to investigate causal links between brain and behavior.
Flexible codes and loci of visual working memory
Neural correlates of visual working memory have been found in early visual, parietal, and prefrontal regions. These findings have spurred fruitful debate over how and where in the brain memories might be represented. Here, I will present data from multiple experiments to demonstrate how a focus on behavioral requirements can unveil a more comprehensive understanding of the visual working memory system. Specifically, items in working memory must be maintained in a highly robust manner, resilient to interference. At the same time, storage mechanisms must preserve a high degree of flexibility in case of changing behavioral goals. Several examples will be explored in which visual memory representations are shown to undergo transformations, and even shift their cortical locus alongside their coding format based on specifics of the task.
flexibility coverage
3 items