Memory
memory
Latest
N/A
We are seeking an outstanding researcher with expertise in computational or mathematical psychology to join the Complex Human Data Hub and contribute to the school’s research and teaching program. The CHDH has areas of strength in memory, perception, categorization, decision-making, language, cultural evolution, and social network analysis. We welcome applicants from all areas of mathematical psychology, computational cognitive science, computational behavioural science and computational social science and are especially interested in applicants who can build upon or complement our existing strengths. We particularly encourage applicants whose theoretical approaches and methodologies connect with social network processes and/or culture and cognition, or whose work links individual psychological processes to broader societal processes. We especially encourage women and other minorities to apply.
Using Fast Periodic Visual Stimulation to measure cognitive function in dementia
Fast periodic visual stimulation (FPVS) has emerged as a promising tool for assessing cognitive function in individuals with dementia. This technique leverages electroencephalography (EEG) to measure brain responses to rapidly presented visual stimuli, offering a non-invasive and objective method for evaluating a range of cognitive functions. Unlike traditional cognitive assessments, FPVS does not rely on behavioural responses, making it particularly suitable for individuals with cognitive impairment. In this talk I will highlight a series of studies that have demonstrated its ability to detect subtle deficits in recognition memory, visual processing and attention in dementia patients using EEG in the lab, at home and in clinic. The method is quick, cost-effective, and scalable, utilizing widely available EEG technology. FPVS holds significant potential as a functional biomarker for early diagnosis and monitoring of dementia, paving the way for timely interventions and improved patient outcomes.
Exploring Lifespan Memory Development and Intervention Strategies for Memory Decline through a Unified Model-Based Assessment
Understanding and potentially reversing memory decline necessitates a comprehensive examination of memory's evolution throughout life. Traditional memory assessments, however, suffer from a lack of comparability across different age groups due to the diverse nature of the tests employed. Addressing this gap, our study introduces a novel, ACT-R model-based memory assessment designed to provide a consistent metric for evaluating memory function across a lifespan, from 5 to 85-year-olds. This approach allows for direct comparison across various tasks and materials tailored to specific age groups. Our findings reveal a pronounced U-shaped trajectory of long-term memory function, with performance at age 5 mirroring those observed in elderly individuals with impairments, highlighting critical periods of memory development and decline. Leveraging this unified assessment method, we further investigate the therapeutic potential of rs-fMRI-guided TBS targeting area 8AV in individuals with early-onset Alzheimer’s Disease—a region implicated in memory deterioration and mood disturbances in this population. This research not only advances our understanding of memory's lifespan dynamics but also opens new avenues for targeted interventions in Alzheimer’s Disease, marking a significant step forward in the quest to mitigate memory decay.
The contribution of mental face representations to individual face processing abilities
People largely differ with respect to how well they can learn, memorize, and perceive faces. In this talk, I address two potential sources of variation. One factor might be people’s ability to adapt their perception to the kind of faces they are currently exposed to. For instance, some studies report that those who show larger adaptation effects are also better at performing face learning and memory tasks. Another factor might be people’s sensitivity to perceive fine differences between similar-looking faces. In fact, one study shows that the brain of good performers in a face memory task shows larger neural differences between similar-looking faces. Capitalizing on this body of evidence, I present a behavioural study where I explore the relationship between people’s perceptual adaptability and sensitivity and their individual face processing performance.
Diagnosing dementia using Fastball neurocognitive assessment
Fastball is a novel, fast, passive biomarker of cognitive function, that uses cheap, scalable electroencephalography (EEG) technology. It is sensitive to early dementia; language, education, effort and anxiety independent and can be used in any setting including patients’ homes. It can capture a range of cognitive functions including semantic memory, recognition memory, attention and visual function. We have shown that Fastball is sensitive to cognitive dysfunction in Alzheimer’s disease and Mild Cognitive Impairment, with data collected in patients’ homes using low-cost portable EEG. We are now preparing for significant scale-up and the validation of Fastball in primary and secondary care.
Dissociating learning-induced effects of meaning and familiarity in visual working memory for Chinese characters
Visual working memory (VWM) is limited in capacity, but memorizing meaningful objects may refine this limitation. However, meaningless and meaningful stimuli usually differ perceptually and an object’s association with meaning is typically already established before the actual experiment. We applied a strict control over these potential confounds by asking observers (N=45) to actively learn associations of (initially) meaningless objects. To this end, a change detection task presented Chinese characters, which were meaningless to our observers. Subsequently, half of the characters were consistently paired with pictures of animals. Then, the initial change detection task was repeated. The results revealed enhanced VWM performance after learning, in particular for meaning-associated characters (though not quite reaching the accuracy level attained by N=20 native Chinese observers). These results thus provide direct experimental evidence that the short-term retention of objects benefits from active learning of an object’s association with meaning in long-term memory.
The speaker identification ability of blind and sighted listeners
Previous studies have shown that blind individuals outperform sighted controls in a variety of auditory tasks; however, only few studies have investigated blind listeners’ speaker identification abilities. In addition, existing studies in the area show conflicting results. The presented empirical investigation with 153 blind (74 of them congenitally blind) and 153 sighted listeners is the first of its kind and scale in which long-term memory effects of blind listeners’ speaker identification abilities are examined. For the empirical investigation, all listeners were evenly assigned to one of nine subgroups (3 x 3 design) in order to investigate the influence of two parameters with three levels, respectively, on blind and sighted listeners’ speaker identification performance. The parameters were a) time interval; i.e. a time interval of 1, 3 or 6 weeks between the first exposure to the voice to be recognised (familiarisation) and the speaker identification task (voice lineup); and b) signal quality; i.e. voice recordings were presented in either studio-quality, mobile phone-quality or as recordings of whispered speech. Half of the presented voice lineups were target-present lineups in which the previously heard target voice was included. The other half consisted of target-absent lineups which contained solely distractor voices. Blind individuals outperformed sighted listeners only under studio quality conditions. Furthermore, for blind and sighted listeners no significant performance differences were found with regard to the three investigated time intervals of 1, 3 and 6 weeks. Blind as well as sighted listeners were significantly better at picking the target voice from target-present lineups than at indicating that the target voice was absent in target-absent lineups. Within the blind group, no significant correlations were found between identification performance and onset or duration of blindness. Implications for the field of forensic phonetics are discussed.
What's wrong with the prosopagnosia literature? A new approach to diagnosing and researching the condition
Developmental prosopagnosia is characterised by severe, lifelong difficulties when recognising facial identity. Most researchers require prosopagnosia cases exhibit ultra-conservative levels of impairment on the Cambridge Face Memory Test before they include them in their experiments. This results in the majority of people who believe that they have this condition being excluded from the scientific literature. In this talk I outline the many issues that will afflict prosopagnosia research if this continues, and show that these excluded cases do exhibit impairments on all commonly used diagnostic tests when a group-based method of assessment is utilised. I propose a paradigm shift away from cognitive task-based approaches to diagnosing prosopagnosia, and outline a new way that researchers can investigate this condition.
Distributed and stable memory representations may lead to serial dependence
Perception and action are biased by our recent experiences. Even when a sequence of stimuli are randomly presented, responses are sometimes attracted toward the past. The mechanism of such bias, recently termed serial dependence, is still under investigation. Currently, there is mixed evidence indicating that such bias could be either from a sensory and perceptual origin or occurring only at decisional stages. In this talk, I will present recent findings from our group showing that biases are decreased when disrupting the memory trace in a premotor region in a simple visuomotor task. In addition, we have shown that this bias is stable over periods of up to 8 s. At the end, I will show ongoing analysis of a recent experiment and argue that serial dependence may rely on distributed memory representations of stimuli and task relevant features.
Computational Models of Fine-Detail and Categorical Information in Visual Working Memory: Unified or Separable Representations?
When we remember a stimulus we rarely maintain a full fidelity representation of the observed item. Our working memory instead maintains a mixture of the observed feature values and categorical/gist information. I will discuss evidence from computational models supporting a mix of categorical and fine-detail information in working memory. Having established the need for two memory formats in working memory, I will discuss whether categorical and fine-detailed information for a stimulus are represented separately or as a single unified representation. Computational models of these two potential cognitive structures make differing predictions about the pattern of responses in visual working memory recall tests. The present study required participants to remember the orientation of stimuli for later reproduction. The pattern of responses are used to test the competing representational structures and to quantify the relative amount of fine-detailed and categorical information maintained. The effects of set size, encoding time, serial order, and response order on memory precision, categorical information, and guessing rates are also explored. (This is a 60 min talk).
The diachronic account of attentional selectivity
Many models of attention assume that attentional selection takes place at a specific moment in time which demarcates the critical transition from pre-attentive to attentive processing of sensory input. We argue that this intuitively appealing account is not only inaccurate, but has led to substantial conceptual confusion (to the point where some attention researchers offer to abandon the term ‘attention’ altogether). As an alternative, we offer a “diachronic” framework that describes attentional selectivity as a process that unfolds over time. Key to this view is the concept of attentional episodes, brief periods of intense attentional amplification of sensory representations that regulate access to working memory and response-related processes. We describe how attentional episodes are linked to earlier attentional mechanisms and to recurrent processing at the neural level. We present data showing that multiple sequential events can be involuntarily encoded in working memory when they appear during the same attentional episode, whether they are relevant or not. We also discuss the costs associated with processing multiple events within a single episode. Finally, we argue that breaking down the dichotomy between pre-attentive and attentive (as well as early vs. late selection) offers new solutions to old problems in attention research that have never been resolved. It can provide a unified and conceptually coherent account of the network of cognitive and neural processes that produce the goal-directed selectivity in perceptual processing that is commonly referred to as “attention”.
What are the consequences of directing attention within working memory?
The role of attention in working memory remains controversial, but there is some agreement on the notion that the focus of attention holds mnemonic representations in a privileged state of heightened accessibility in working memory, resulting in better memory performance for items that receive focused attention during retention. Closely related, representations held in the focus of attention are often observed to be robust and protected from degradation caused by either perceptual interference (e.g., Makovski & Jiang, 2007; van Moorselaar et al., 2015) or decay (e.g., Barrouillet et al., 2007). Recent findings indicate, however, that representations held in the focus of attention are particularly vulnerable to degradation, and thus, appear to be particularly fragile rather than robust (e.g., Hitch et al., 2018; Hu et al., 2014). The present set of experiments aims at understanding the apparent paradox of information in the focus of attention having a protected vs. vulnerable status in working memory. To that end, we examined the effect of perceptual interference on memory performance for information that was held within vs. outside the focus of attention, across different ways of bringing items in the focus of attention and across different time scales.
Age-related dedifferentiation across representational levels and their relation to memory performance
Episodic memory performance decreases with advancing age. According to theoretical models, such memory decline might be a consequence of age-related reductions in the ability to form distinct neural representations of our past. In this talk, I want to present our new age-comparative fMRI study investigating age-related neural dedifferentiation across different representational levels. By combining univariate analyses and searchlight pattern similarity analyses, we found that older adults show reduced category selective processing in higher visual areas, less specific item representations in occipital regions and less stable item representations. Dedifferentiation on all these representational levels was related to memory performance, with item specificity being the strongest contributor. Overall, our results emphasize that age-related dedifferentiation can be observed across the entire cortical hierarchy which may selectively impair memory performance depending on the memory task.
Psychological essentialism in working memory research
Psychological essentialism is ubiquitous. It is one of primary bases of thoughts and behaviours throughout our entire lifetime. Human's such characteristics that find an unseen hidden entity behind observable phenomena or exemplars, however, lead us to somehow biased thinking and reasoning even in the realm of science, including psychology. For example, a latent variable extracted from various measurements is just a statistical property calculated in structural equation modeling, therefore, is not necessary to be a fundamental reality. Yet, we occasionally feel that there is the essential nature of such a psychological construct a priori. This talk will demonstrate examples of psychological essentialism in psychology and examine its resultant influences on working memory related issues, e. g., working memory training. Such demonstration, examination, and subsequent discussions on these topics will provide us an opportunity to reconsider the concept of working memory.
Removing information from working memory
Holding information in working memory is essential for cognition, but removing unwanted thoughts is equally important. There is great flexibility in how we can manipulate information in working memory, but the processes and consequences of these operations are poorly understood. In this talk I will discuss our recent findings using multivariate pattern analyses of fMRI brain data to demonstrate the successful removal of information from working memory using three different strategies: suppressing a specific thought, replacing a thought with a different one, and clearing the mind of all thought. These strategies are supported by distinct brain regions and have differential consequences on the encoding of new information. I will discuss implications of these results on theories of memory and I will highlight some new directions involving the use of real-time neurofeedback to investigate causal links between brain and behavior.
Enhanced perception and cognition in deaf sign language users: EEG and behavioral evidence
In this talk, Dr. Quandt will share results from behavioral and cognitive neuroscience studies from the past few years of her work in the Action & Brain Lab, an EEG lab at Gallaudet University, the world's premiere university for deaf and hard-of-hearing students. These results will center upon the question of how extensive knowledge of signed language changes, and in some cases enhances, people's perception and cognition. Evidence for this effect comes from studies of human biological motion using point light displays, self-report, and studies of action perception. Dr. Quandt will also discuss some of the lab's efforts in designing and testing a virtual reality environment in which users can learn American Sign Language from signing avatars (virtual humans).
Categories, language, and visual working memory: how verbal labels change capacity limitations
The limited capacity of visual working memory constrains the quantity and quality of the information we can store in mind for ongoing processing. Research from our lab has demonstrated that verbal labeling/categorization of visual inputs increases its retention and fidelity in visual working memory. In this talk, I will outline the hypotheses that explain the interaction between visual and verbal inputs in working memory, leading to the boosts we observed. I will further show how manipulations of the categorical distinctiveness of the labels, the timing of their occurrence, to which item labels are applied, as well as their validity modulate the benefits one can draw from combining visual and verbal inputs to alleviate capacity limitations. Finally, I will discuss the implications of these results to our understanding of working memory and its interaction with prior knowledge.
Differential working memory functioning
The integrated conflict monitoring theory of Botvinick introduced cognitive demand into conflict monitoring research. We investigated effects of individual differences of cognitive demand and another determinant of conflict monitoring entitled reinforcement sensitivity on conflict monitoring. We showed evidence of differential variability of conflict monitoring intensity using the electroencephalogram (EEG), functional magnet resonance imaging (fMRI) and behavioral data. Our data suggest that individual differences of anxiety and reasoning ability are differentially related to the recruitment of proactive and reactive cognitive control (cf. Braver). Based on previous findings, the team of the Leue-Lab investigated new psychometric data on conflict monitoring and proactive-reactive cognitive control. Moreover, data of the Leue-Lab suggest the relevance of individual differences of conflict monitoring for the context of deception. In this respect, we plan new studies highlighting individual differences of the functioning of the Anterior Cingulate Cortex (ACC). Disentangling the role of individual differences in working memory-related cognitive demand, mental effort, and reinforcement-related processes opens new insights for cognitive-motivational approaches of information processing (Passcode to rewatch: 0R8v&m59).
Memory for Latent Representations: An Account of Working Memory that Builds on Visual Knowledge for Efficient and Detailed Visual Representations
Visual knowledge obtained from our lifelong experience of the world plays a critical role in our ability to build short-term memories. We propose a mechanistic explanation of how working memory (WM) representations are built from the latent representations of visual knowledge and can then be reconstructed. The proposed model, Memory for Latent Representations (MLR), features a variational autoencoder with an architecture that corresponds broadly to the human visual system and an activation-based binding pool of neurons that binds items’ attributes to tokenized representations. The simulation results revealed that shape information for stimuli that the model was trained on, can be encoded and retrieved efficiently from latents in higher levels of the visual hierarchy. On the other hand, novel patterns that are completely outside the training set can be stored from a single exposure using only latents from early layers of the visual system. Moreover, the representation of a given stimulus can have multiple codes, representing specific visual features such as shape or color, in addition to categorical information. Finally, we validated our model by testing a series of predictions against behavioral results acquired from WM tasks. The model provides a compelling demonstration of visual knowledge yielding the formation of compact visual representation for efficient memory encoding.
What the fluctuating impact of memory load on decision speed tells us about thinking
Previous work with complex memory span tasks, in which simple choice decisions are imposed between presentations of to-be-remembered items, shows that these secondary tasks reduce memory span. It is less clear how reconfiguring and maintaining various amounts of information affects decision speeds. We documented and replicated a non-linear effect of accumulating memory items on concurrent processing judgments, showing that this pattern could be made linear by introducing "lead-in" processing judgments prior to the start of the memory list. With lead-in judgments, there was a large and consistent cost to processing response times with the introduction of the first item in the memory list, which increased gradually per item as the list accumulated. However, once presentation of the list was complete, decision responses sped rapidly: within a few seconds, decisions were at least as fast as when remembering a single item. This pattern of findings is inconsistent with the idea that merely holding information in mind conflicts with attention-demanding decision tasks. Instead, it is possible that reconfiguring memory items for responding provokes conflict between memory and processing in complex span tasks.
Flexible codes and loci of visual working memory
Neural correlates of visual working memory have been found in early visual, parietal, and prefrontal regions. These findings have spurred fruitful debate over how and where in the brain memories might be represented. Here, I will present data from multiple experiments to demonstrate how a focus on behavioral requirements can unveil a more comprehensive understanding of the visual working memory system. Specifically, items in working memory must be maintained in a highly robust manner, resilient to interference. At the same time, storage mechanisms must preserve a high degree of flexibility in case of changing behavioral goals. Several examples will be explored in which visual memory representations are shown to undergo transformations, and even shift their cortical locus alongside their coding format based on specifics of the task.
Visual working memory representations are distorted by their use in perceptual comparisons
Visual working memory (VWM) allows us to maintain a small amount of task-relevant information in mind so that we can use them to guide our behavior. Although past studies have successfully characterized its capacity limit and representational quality during maintenance, the consequence of its usage for task-relevant behaviors has been largely unknown. In this talk, I will demonstrate that VWM representations get distorted when they are used for perceptual comparisons with new visual inputs, especially when the inputs are subjectively similar to the VWM representations. Furthermore, I will show that this similarity-induced memory bias (SIMB) occurs for both simple (e.g. , color, shape) and complex stimuli (e.g., real world objects, faces) that are perceptually encoded and retrieved from long-term memory. Given the observed versatility of the SIMB, its implication for other memory distortion phenomena (e.g., distractor-induced distortion, misinformation effect) will be discussed.
Perception, attention, visual working memory, and decision making: The complete consort dancing together
Our research investigates how processes of attention, visual working memory (VWM), and decision-making combine to translate perception into action. Within this framework, the role of VWM is to form stable representations of transient stimulus events that allow them to be identified by a decision process, which we model as a diffusion process. In psychophysical tasks, we find the capacity of VWM is well defined by a sample-size model, which attributes changes in VWM precision with set-size to differences in the number evidence samples recruited to represent stimuli. In the first part of the talk, I review evidence for the sample-size model and highlight the model's strengths: It provides a parameter-free characterization of the set-size effect; it has plausible neural and cognitive interpretations; an attention-weighted version of the model accounts for the power-law of VWM, and it accounts for the selective updating of VWM in multiple-look experiments. In the second part of the talk, I provide a characterization of the theoretical relationship between two-choice and continuous-outcome decision tasks using the circular diffusion model, highlighting their common features. I describe recent work characterizing the joint distributions of decision outcomes and response times in continuous-outcome tasks using the circular diffusion model and show that the model can clearly distinguish variable-precision and simple mixture models of the evidence entering the decision process. The ability to distinguish these kinds of processes is central to current VWM studies.
Getting to know you: emerging neural representations during face familiarization
The successful recognition of familiar persons is critical for social interactions. Despite extensive research on the neural representations of familiar faces, we know little about how such representations unfold as someone becomes familiar. In three EEG experiments, we elucidated how representations of face familiarity and identity emerge from different qualities of familiarization: brief perceptual exposure (Experiment 1), extensive media familiarization (Experiment 2) and real-life personal familiarization (Experiment 3). Time-resolved representational similarity analysis revealed that familiarization quality has a profound impact on representations of face familiarity: they were strongly visible after personal familiarization, weaker after media familiarization, and absent after perceptual familiarization. Across all experiments, we found no enhancement of face identity representation, suggesting that familiarity and identity representations emerge independently during face familiarization. Our results emphasize the importance of extensive, real-life familiarization for the emergence of robust face familiarity representations, constraining models of face perception and recognition memory.
The Jena Voice Learning and Memory Test (JVLMT)
The ability to recognize someone’s voice spans a broad spectrum with phonagnosia on the low end and super recognition at the high end. Yet there is no standardized test to measure the individual ability to learn and recognize newly-learnt voices with samples of speech-like phonetic variability. We have developed the Jena Voice Learning and Memory Test (JVLMT), a 20 min-test based on item response theory and applicable across different languages. The JVLMT consists of three phases in which participants are familiarized with eight speakers in two stages and then perform a three-alternative forced choice recognition task, using pseudo sentences devoid of semantic content. Acoustic (dis)similarity analyses were used to create items with different levels of difficulty. Test scores are based on 22 Rasch-conform items. Items were selected and validated in online studies based on 232 and 454 participants, respectively. Mean accuracy is 0.51 with an SD of .18. The JVLMT showed high and moderate correlations with convergent validation tests (Bangor Voice Matching Test; Glasgow Voice Memory Test) and a weak correlation with a discriminant validation test (Digit Span). Empirical (marginal) reliability is 0.66. Four participants with super recognition (at least 2 SDs above the mean) and 7 participants with phonagnosia (at least 2 SDs below the mean) were identified. The JVLMT is a promising screen too for voice recognition abilities in a scientific and neuropsychological context.
Exploring Memories of Scenes
State-of-the-art machine vision models can predict human recognition memory for complex scenes with astonishing accuracy. In this talk I present work that investigated how memorable scenes are actually remembered and experienced by human observers. We found that memorable scenes were recognized largely based on recollection of specific episodic details but also based on familiarity for an entire scene. I thus highlight current limitations in machine vision models emulating human recognition memory, with promising opportunities for future research. Moreover, we were interested in what observers specifically remember about complex scenes. We thus considered the functional role of eye-movements as a window into the content of memories, particularly when observers recollected specific information about a scene. We found that when observers formed a memory representation that they later recollected (compared to scenes that only felt familiar), the overall extent of exploration was broader, with a specific subset of fixations clustered around later to-be-recollected scene content, irrespective of the memorability of a scene. I discuss the critical role that our viewing behavior plays in visual memory formation and retrieval and point to potential implications for machine vision models predicting the content of human memories.
memory coverage
26 items