Modeling
modeling
Latest
Face and voice perception as a tool for characterizing perceptual decisions and metacognitive abilities across the general population and psychosis spectrum
Humans constantly make perceptual decisions on human faces and voices. These regularly come with the challenge of receiving only uncertain sensory evidence, resulting from noisy input and noisy neural processes. Efficiently adapting one’s internal decision system including prior expectations and subsequent metacognitive assessments to these challenges is crucial in everyday life. However, the exact decision mechanisms and whether these represent modifiable states remain unknown in the general population and clinical patients with psychosis. Using data from a laboratory-based sample of healthy controls and patients with psychosis as well as a complementary, large online sample of healthy controls, I will demonstrate how a combination of perceptual face and voice recognition decision fidelity, metacognitive ratings, and Bayesian computational modelling may be used as indicators to differentiate between non-clinical and clinical states in the future.
Appearance-based impression formation
Despite the common advice “not to judge a book by its cover”, we form impressions of character within a second of seeing a stranger’s face. These impressions have widespread consequences for society and for the economy, making it vital that we have a clear theoretical understanding of which impressions are important and how they are formed. In my talk, I outline a data-driven approach to answering these questions, starting by building models of the key dimensions underlying impressions of naturalistic face images. Overall, my findings suggest deeper links between the fields of face perception and social stereotyping than have previously been recognised.
Psychological essentialism in working memory research
Psychological essentialism is ubiquitous. It is one of primary bases of thoughts and behaviours throughout our entire lifetime. Human's such characteristics that find an unseen hidden entity behind observable phenomena or exemplars, however, lead us to somehow biased thinking and reasoning even in the realm of science, including psychology. For example, a latent variable extracted from various measurements is just a statistical property calculated in structural equation modeling, therefore, is not necessary to be a fundamental reality. Yet, we occasionally feel that there is the essential nature of such a psychological construct a priori. This talk will demonstrate examples of psychological essentialism in psychology and examine its resultant influences on working memory related issues, e. g., working memory training. Such demonstration, examination, and subsequent discussions on these topics will provide us an opportunity to reconsider the concept of working memory.
Categories, language, and visual working memory: how verbal labels change capacity limitations
The limited capacity of visual working memory constrains the quantity and quality of the information we can store in mind for ongoing processing. Research from our lab has demonstrated that verbal labeling/categorization of visual inputs increases its retention and fidelity in visual working memory. In this talk, I will outline the hypotheses that explain the interaction between visual and verbal inputs in working memory, leading to the boosts we observed. I will further show how manipulations of the categorical distinctiveness of the labels, the timing of their occurrence, to which item labels are applied, as well as their validity modulate the benefits one can draw from combining visual and verbal inputs to alleviate capacity limitations. Finally, I will discuss the implications of these results to our understanding of working memory and its interaction with prior knowledge.
Characterising the brain representations behind variations in real-world visual behaviour
Not all individuals are equally competent at recognizing the faces they interact with. Revealing how the brains of different individuals support variations in this ability is a crucial step to develop an understanding of real-world human visual behaviour. In this talk, I will present findings from a large high-density EEG dataset (>100k trials of participants processing various stimulus categories) and computational approaches which aimed to characterise the brain representations behind real-world proficiency of “super-recognizers”—individuals at the top of face recognition ability spectrum. Using decoding analysis of time-resolved EEG patterns, we predicted with high precision the trial-by-trial activity of super-recognizers participants, and showed that evidence for face recognition ability variations is disseminated along early, intermediate and late brain processing steps. Computational modeling of the underlying brain activity uncovered two representational signatures supporting higher face recognition ability—i) mid-level visual & ii) semantic computations. Both components were dissociable in brain processing-time (the first around the N170, the last around the P600) and levels of computations (the first emerging from mid-level layers of visual Convolutional Neural Networks, the last from a semantic model characterising sentence descriptions of images). I will conclude by presenting ongoing analyses from a well-known case of acquired prosopagnosia (PS) using similar computational modeling of high-density EEG activity.
modeling coverage
5 items