Mri
Latest
Exploring Lifespan Memory Development and Intervention Strategies for Memory Decline through a Unified Model-Based Assessment
Understanding and potentially reversing memory decline necessitates a comprehensive examination of memory's evolution throughout life. Traditional memory assessments, however, suffer from a lack of comparability across different age groups due to the diverse nature of the tests employed. Addressing this gap, our study introduces a novel, ACT-R model-based memory assessment designed to provide a consistent metric for evaluating memory function across a lifespan, from 5 to 85-year-olds. This approach allows for direct comparison across various tasks and materials tailored to specific age groups. Our findings reveal a pronounced U-shaped trajectory of long-term memory function, with performance at age 5 mirroring those observed in elderly individuals with impairments, highlighting critical periods of memory development and decline. Leveraging this unified assessment method, we further investigate the therapeutic potential of rs-fMRI-guided TBS targeting area 8AV in individuals with early-onset Alzheimer’s Disease—a region implicated in memory deterioration and mood disturbances in this population. This research not only advances our understanding of memory's lifespan dynamics but also opens new avenues for targeted interventions in Alzheimer’s Disease, marking a significant step forward in the quest to mitigate memory decay.
Representational Connectivity Analysis (RCA): a Method for Investigating Flow of Content-Specific Information in the Brain
Representational Connectivity Analysis (RCA) has gained mounting interest in the past few years. This is because, rather than conventional tracking of signal, RCA allows for the tracking of information across the brain. It can also provide insights into the content and potential transformations of the transferred information. This presentation explains several variations of the method in terms of implementation and how it can be adopted for different modalities (E/MEG and fMRI). I will also present caveats and nuances of the method which should be considered when using the RCA.
Disentangling neural correlates of consciousness and task relevance using EEG and fMRI
How does our brain generate consciousness, that is, the subjective experience of what it is like to see face or hear a sound? Do we become aware of a stimulus during early sensory processing or only later when information is shared in a wide-spread fronto-parietal network? Neural correlates of consciousness are typically identified by comparing brain activity when a constant stimulus (e.g., a face) is perceived versus not perceived. However, in most previous experiments, conscious perception was systematically confounded with post-perceptual processes such as decision-making and report. In this talk, I will present recent EEG and fMRI studies dissociating neural correlates of consciousness and task-related processing in visual and auditory perception. Our results suggest that consciousness emerges during early sensory processing, while late, fronto-parietal activity is associated with post-perceptual processes rather than awareness. These findings challenge predominant theories of consciousness and highlight the importance of considering task relevance as a confound across different neuroscientific methods, experimental paradigms and sensory modalities.
ItsAllAboutMotion: Encoding of speed in the human Middle Temporal cortex
The human middle temporal complex (hMT+) has a crucial biological relevance for the processing and detection of direction and speed of motion in visual stimuli. In both humans and monkeys, it has been extensively investigated in terms of its retinotopic properties and selectivity for direction of moving stimuli; however, only in recent years there has been an increasing interest in how neurons in MT encode the speed of motion. In this talk, I will explore the proposed mechanism of speed encoding questioning whether hMT+ neuronal populations encode the stimulus speed directly, or whether they separate motion into its spatial and temporal components. I will characterize how neuronal populations in hMT+ encode the speed of moving visual stimuli using electrocorticography ECoG and 7T fMRI. I will illustrate that the neuronal populations measured in hMT+ are not directly tuned to stimulus speed, but instead encode speed through separate and independent spatial and temporal frequency tuning. Finally, I will show that this mechanism plays a role in evaluating multisensory responses for visual, tactile and auditory motion stimuli in hMT+.
Age-related dedifferentiation across representational levels and their relation to memory performance
Episodic memory performance decreases with advancing age. According to theoretical models, such memory decline might be a consequence of age-related reductions in the ability to form distinct neural representations of our past. In this talk, I want to present our new age-comparative fMRI study investigating age-related neural dedifferentiation across different representational levels. By combining univariate analyses and searchlight pattern similarity analyses, we found that older adults show reduced category selective processing in higher visual areas, less specific item representations in occipital regions and less stable item representations. Dedifferentiation on all these representational levels was related to memory performance, with item specificity being the strongest contributor. Overall, our results emphasize that age-related dedifferentiation can be observed across the entire cortical hierarchy which may selectively impair memory performance depending on the memory task.
Removing information from working memory
Holding information in working memory is essential for cognition, but removing unwanted thoughts is equally important. There is great flexibility in how we can manipulate information in working memory, but the processes and consequences of these operations are poorly understood. In this talk I will discuss our recent findings using multivariate pattern analyses of fMRI brain data to demonstrate the successful removal of information from working memory using three different strategies: suppressing a specific thought, replacing a thought with a different one, and clearing the mind of all thought. These strategies are supported by distinct brain regions and have differential consequences on the encoding of new information. I will discuss implications of these results on theories of memory and I will highlight some new directions involving the use of real-time neurofeedback to investigate causal links between brain and behavior.
Enhanced perception and cognition in deaf sign language users: EEG and behavioral evidence
In this talk, Dr. Quandt will share results from behavioral and cognitive neuroscience studies from the past few years of her work in the Action & Brain Lab, an EEG lab at Gallaudet University, the world's premiere university for deaf and hard-of-hearing students. These results will center upon the question of how extensive knowledge of signed language changes, and in some cases enhances, people's perception and cognition. Evidence for this effect comes from studies of human biological motion using point light displays, self-report, and studies of action perception. Dr. Quandt will also discuss some of the lab's efforts in designing and testing a virtual reality environment in which users can learn American Sign Language from signing avatars (virtual humans).
Spatio-temporal large-scale organization of the trimodal connectome derived from concurrent EEG-fMRI and diffusion MRI
While time-averaged dynamics of brain functional connectivity are known to reflect the underlying structural connections, the exact relationship between large-scale function and structure remains an unsolved issue in network neuroscience. Large-scale networks are traditionally observed by correlation of fMRI timecourses, and connectivity of source-reconstructed electrophysiological measures are less prominent. Accessing the brain by using multimodal recordings combining EEG, fMRI and diffusion MRI (dMRI) can help to refine the understanding of the spatio-temporal organization of both static and dynamic brain connectivity. In this talk I will discuss our prior findings that whole-brain connectivity derived from source-reconstructed resting-state (rs) EEG is both linked to the rs-fMRI and dMRI connectome. The EEG connectome provides complimentary information to link function to structure as compared to an fMRI-only perspective. I will present an approach extending the multimodal data integration of concurrent rs-EEG-fMRI to the temporal domain by combining dynamic functional connectivity of both modalities to better understand the neural basis of functional connectivity dynamics. The close relationship between time-varying changes in EEG and fMRI whole-brain connectivity patterns provide evidence for spontaneous reconfigurations of the brain’s functional processing architecture. Finally, I will talk about data quality of connectivity derived from concurrent EEG-fMRI recordings and how the presented multimodal framework could be applied to better understand focal epilepsy. In summary this talk will give an overview of how to integrate large-scale EEG networks with MRI-derived brain structure and function. In conclusion EEG-based connectivity measures not only are closely linked to MRI-based measures of brain structure and function over different time-scales, but also provides complimentary information on the function of underlying brain organization.
Differential working memory functioning
The integrated conflict monitoring theory of Botvinick introduced cognitive demand into conflict monitoring research. We investigated effects of individual differences of cognitive demand and another determinant of conflict monitoring entitled reinforcement sensitivity on conflict monitoring. We showed evidence of differential variability of conflict monitoring intensity using the electroencephalogram (EEG), functional magnet resonance imaging (fMRI) and behavioral data. Our data suggest that individual differences of anxiety and reasoning ability are differentially related to the recruitment of proactive and reactive cognitive control (cf. Braver). Based on previous findings, the team of the Leue-Lab investigated new psychometric data on conflict monitoring and proactive-reactive cognitive control. Moreover, data of the Leue-Lab suggest the relevance of individual differences of conflict monitoring for the context of deception. In this respect, we plan new studies highlighting individual differences of the functioning of the Anterior Cingulate Cortex (ACC). Disentangling the role of individual differences in working memory-related cognitive demand, mental effort, and reinforcement-related processes opens new insights for cognitive-motivational approaches of information processing (Passcode to rewatch: 0R8v&m59).
Flexible codes and loci of visual working memory
Neural correlates of visual working memory have been found in early visual, parietal, and prefrontal regions. These findings have spurred fruitful debate over how and where in the brain memories might be represented. Here, I will present data from multiple experiments to demonstrate how a focus on behavioral requirements can unveil a more comprehensive understanding of the visual working memory system. Specifically, items in working memory must be maintained in a highly robust manner, resilient to interference. At the same time, storage mechanisms must preserve a high degree of flexibility in case of changing behavioral goals. Several examples will be explored in which visual memory representations are shown to undergo transformations, and even shift their cortical locus alongside their coding format based on specifics of the task.
Markers of brain connectivity and sleep-dependent restoration: basic research and translation into clinical populations
The human brain is a heavily interconnected structure giving rise to complex functions. While brain functionality is mostly revealed during wakefulness, the sleeping brain might offer another view into physiological and pathological brain connectivity. Furthermore, there is a large body of evidence supporting that sleep mediates plastic changes in brain connectivity. Although brain plasticity depends on environmental input which is provided in the waking state, disconnection during sleep might be necessary for integrating new into existing information and at the same time restoring brain efficiency. In this talk, I will present structural, molecular, and electrophysiological markers of brain connectivity and sleep-dependent restoration that we have evaluated using Magnetic Resonance Imaging and electroencephalography in a healthy population. In a second step, I will show how we translated the gained findings into two clinical populations in which alterations in brain connectivity have been described, the neuropsychiatric disorder attention-deficit/hyperactivity disorder (ADHD) and the neurologic disorder thalamic ischemic stroke.
Mri coverage
11 items