physiology
Latest
PhenoSign - Molecular Dynamic Insights
Do You Know Your Blood Glucose Level? You Probably Should! A single measurement is not enough to truly understand your metabolic health. Blood glucose levels fluctuate dynamically, and meaningful insights require continuous monitoring over time. But glucose is just one example. Many other molecular concentrations in the body are not static. Their variations are influenced by individual physiology and overall health. PhenoSign, a Swiss MedTech startup, is on a mission to become the leader in real-time molecular analysis of complex fluids, supporting clinical decision-making and life sciences applications. By providing real-time, in-situ molecular insights, we aim to advance medicine and transform life sciences research. This talk will provide an overview of PhenoSign’s journey since its inception in 2022—our achievements, challenges, and the strategic roadmap we are executing to shape the future of real-time molecular diagnostics.
Characterising Representations of Goal Obstructiveness and Uncertainty Across Behavior, Physiology, and Brain Activity Through a Video Game Paradigm
The nature of emotions and their neural underpinnings remain debated. Appraisal theories such as the component process model propose that the perception and evaluation of events (appraisal) is the key to eliciting the range of emotions we experience. Here we study whether the framework of appraisal theories provides a clearer account for the differentiation of emotional episodes and their functional organisation in the brain. We developed a stealth game to manipulate appraisals in a systematic yet immersive way. The interactive nature of video games heightens self-relevance through the experience of goal-directed action or reaction, evoking strong emotions. We show that our manipulations led to changes in behaviour, physiology and brain activations.
A new science of emotion: How brain-mind-body processes form functional neurological disorder
One of the most common medical conditions you’ve (maybe) never heard of – functional neurological disorder – lays at the interface of neurology and psychiatry and offers a window into fundamental brain-mind-body processes. Across ancient and modern times, functional neurological disorder has had a long and tumultuous history, with an evolving debate and understanding of how biopsychosocial factors contribute to the manifestation of the disorder. A central issue in contemporary discussions has revolved around questioning the extent to which emotions play a mechanistic and aetiological role in functional neurological disorder. Critical in this context, however, is that this ongoing debate has largely omitted the question of what emotions are in the first place. This talk first brings together advances in the understanding of working principles of the brain fundamental to introducing a new understanding of what emotions are. Building on recent theoretical frameworks from affective neuroscience, the idea of how the predictive process of emotion construction can be an integral component of the pathophysiology of functional neurological disorder is discussed.
Investigating visual recognition and the temporal lobes using electrophysiology and fast periodic visual stimulation
The ventral visual pathway extends from the occipital to the anterior temporal regions, and is specialized in giving meaning to objects and people that are perceived through vision. Numerous studies in functional magnetic resonance imaging have focused on the cerebral basis of visual recognition. However, this technique is susceptible to magnetic artefacts in ventral anterior temporal regions and it has led to an underestimation of the role of these regions within the ventral visual stream, especially with respect to face recognition and semantic representations. Moreover, there is an increasing need for implicit methods assessing these functions as explicit tasks lack specificity. In this talk, I will present three studies using fast periodic visual stimulation (FPVS) in combination with scalp and/or intracerebral EEG to overcome these limitations and provide high SNR in temporal regions. I will show that, beyond face recognition, FPVS can be extended to investigate semantic representations using a face-name association paradigm and a semantic categorisation paradigm with written words. These results shed new light on the role of temporal regions and demonstrate the high potential of the FPVS approach as a powerful electrophysiological tool to assess various cognitive functions in neurotypical and clinical populations.
Getting to know you: emerging neural representations during face familiarization
The successful recognition of familiar persons is critical for social interactions. Despite extensive research on the neural representations of familiar faces, we know little about how such representations unfold as someone becomes familiar. In three EEG experiments, we elucidated how representations of face familiarity and identity emerge from different qualities of familiarization: brief perceptual exposure (Experiment 1), extensive media familiarization (Experiment 2) and real-life personal familiarization (Experiment 3). Time-resolved representational similarity analysis revealed that familiarization quality has a profound impact on representations of face familiarity: they were strongly visible after personal familiarization, weaker after media familiarization, and absent after perceptual familiarization. Across all experiments, we found no enhancement of face identity representation, suggesting that familiarity and identity representations emerge independently during face familiarization. Our results emphasize the importance of extensive, real-life familiarization for the emergence of robust face familiarity representations, constraining models of face perception and recognition memory.
physiology coverage
5 items