presentation
Latest
Deepfake emotional expressions trigger the uncanny valley brain response, even when they are not recognised as fake
Facial expressions are inherently dynamic, and our visual system is sensitive to subtle changes in their temporal sequence. However, researchers often use dynamic morphs of photographs—simplified, linear representations of motion—to study the neural correlates of dynamic face perception. To explore the brain's sensitivity to natural facial motion, we constructed a novel dynamic face database using generative neural networks, trained on a verified set of video-recorded emotional expressions. The resulting deepfakes, consciously indistinguishable from videos, enabled us to separate biological motion from photorealistic form. Results showed that conventional dynamic morphs elicit distinct responses in the brain compared to videos and photos, suggesting they violate expectations (n400) and have reduced social salience (late positive potential). This suggests that dynamic morphs misrepresent facial dynamism, resulting in misleading insights about the neural and behavioural correlates of face perception. Deepfakes and videos elicited largely similar neural responses, suggesting they could be used as a proxy for real faces in vision research, where video recordings cannot be experimentally manipulated. And yet, despite being consciously undetectable as fake, deepfakes elicited an expectation violation response in the brain. This points to a neural sensitivity to naturalistic facial motion, beyond conscious awareness. Despite some differences in neural responses, the realism and manipulability of deepfakes make them a valuable asset for research where videos are unfeasible. Using these stimuli, we proposed a novel marker for the conscious perception of naturalistic facial motion – Frontal delta activity – which was elevated for videos and deepfakes, but not for photos or dynamic morphs.
Face matching and decision making: The influence of framing, task presentation and criterion placement
Many situations rely on the accurate identification of people with whom we are unfamiliar. For example, security at airports or in police investigations require the identification of individuals from photo-ID. Yet, the identification of unfamiliar faces is error prone, even for practitioners who routinely perform this task. Indeed, even training protocols often yield no discernible improvement. The challenge of unfamiliar face identification is often thought of as a perceptual problem; however, this assumption ignores the potential role of decision-making and its contributing factors (e.g., criterion placement). In this talk, I am going to present a series of experiments that investigate the role of decision-making in face identification.
Comparing supervised learning dynamics: Deep neural networks match human data efficiency but show a generalisation lag
Recent research has seen many behavioral comparisons between humans and deep neural networks (DNNs) in the domain of image classification. Often, comparison studies focus on the end-result of the learning process by measuring and comparing the similarities in the representations of object categories once they have been formed. However, the process of how these representations emerge—that is, the behavioral changes and intermediate stages observed during the acquisition—is less often directly and empirically compared. In this talk, I'm going to report a detailed investigation of the learning dynamics in human observers and various classic and state-of-the-art DNNs. We develop a constrained supervised learning environment to align learning-relevant conditions such as starting point, input modality, available input data and the feedback provided. Across the whole learning process we evaluate and compare how well learned representations can be generalized to previously unseen test data. Comparisons across the entire learning process indicate that DNNs demonstrate a level of data efficiency comparable to human learners, challenging some prevailing assumptions in the field. However, our results also reveal representational differences: while DNNs' learning is characterized by a pronounced generalisation lag, humans appear to immediately acquire generalizable representations without a preliminary phase of learning training set-specific information that is only later transferred to novel data.
Error Consistency between Humans and Machines as a function of presentation duration
Within the last decade, Deep Artificial Neural Networks (DNNs) have emerged as powerful computer vision systems that match or exceed human performance on many benchmark tasks such as image classification. But whether current DNNs are suitable computational models of the human visual system remains an open question: While DNNs have proven to be capable of predicting neural activations in primate visual cortex, psychophysical experiments have shown behavioral differences between DNNs and human subjects, as quantified by error consistency. Error consistency is typically measured by briefly presenting natural or corrupted images to human subjects and asking them to perform an n-way classification task under time pressure. But for how long should stimuli ideally be presented to guarantee a fair comparison with DNNs? Here we investigate the influence of presentation time on error consistency, to test the hypothesis that higher-level processing drives behavioral differences. We systematically vary presentation times of backward-masked stimuli from 8.3ms to 266ms and measure human performance and reaction times on natural, lowpass-filtered and noisy images. Our experiment constitutes a fine-grained analysis of human image classification under both image corruptions and time pressure, showing that even drastically time-constrained humans who are exposed to the stimuli for only two frames, i.e. 16.6ms, can still solve our 8-way classification task with success rates way above chance. We also find that human-to-human error consistency is already stable at 16.6ms.
Are integrative, multidisciplinary, and pragmatic models possible? The #PsychMapping experience
This presentation delves into the necessity for simplified models in the field of psychological sciences to cater to a diverse audience of practitioners. We introduce the #PsychMapping model, evaluate its merits and limitations, and discuss its place in contemporary scientific culture. The #PsychMapping model is the product of an extensive literature review, initially within the realm of sport and exercise psychology and subsequently encompassing a broader spectrum of psychological sciences. This model synthesizes the progress made in psychological sciences by categorizing variables into a framework that distinguishes between traits (e.g., body structure and personality) and states (e.g., heart rate and emotions). Furthermore, it delineates internal traits and states from the externalized self, which encompasses behaviour and performance. All three components—traits, states, and the externalized self—are in a continuous interplay with external physical, social, and circumstantial factors. Two core processes elucidate the interactions among these four primary clusters: external perception, encompassing the mechanism through which external stimuli transition into internal events, and self-regulation, which empowers individuals to become autonomous agents capable of exerting control over themselves and their actions. While the model inherently oversimplifies intricate processes, the central question remains: does its pragmatic utility outweigh its limitations, and can it serve as a valuable tool for comprehending human behaviour?
Conversations with Caves? Understanding the role of visual psychological phenomena in Upper Palaeolithic cave art making
How central were psychological features deriving from our visual systems to the early evolution of human visual culture? Art making emerged deep in our evolutionary history, with the earliest art appearing over 100,000 years ago as geometric patterns etched on fragments of ochre and shell, and figurative representations of prey animals flourishing in the Upper Palaeolithic (c. 40,000 – 15,000 years ago). The latter reflects a complex visual process; the ability to represent something that exists in the real world as a flat, two-dimensional image. In this presentation, I argue that pareidolia – the psychological phenomenon of seeing meaningful forms in random patterns, such as perceiving faces in clouds – was a fundamental process that facilitated the emergence of figurative representation. The influence of pareidolia has often been anecdotally observed in Upper Palaeolithic art examples, particularly cave art where the topographic features of cave wall were incorporated into animal depictions. Using novel virtual reality (VR) light simulations, I tested three hypotheses relating to pareidolia in the caves of Upper Palaeolithic cave art in the caves of Las Monedas and La Pasiega (Cantabria, Spain). To evaluate this further, I also developed an interdisciplinary VR eye-tracking experiment, where participants were immersed in virtual caves based on the cave of El Castillo (Cantabria, Spain). Together, these case studies suggest that pareidolia was an intrinsic part of artist-cave interactions (‘conversations’) that influenced the form and placement of figurative depictions in the cave. This has broader implications for conceiving of the role of visual psychological phenomena in the emergence and development of figurative art in the Palaeolithic.
Are integrative, multidisciplinary, and pragmatic models possible? The #PsychMapping experience
This presentation delves into the necessity for simplified models in the field of psychological sciences to cater to a diverse audience of practitioners. We introduce the #PsychMapping model, evaluate its merits and limitations, and discuss its place in contemporary scientific culture. The #PsychMapping model is the product of an extensive literature review, initially within the realm of sport and exercise psychology and subsequently encompassing a broader spectrum of psychological sciences. This model synthesizes the progress made in psychological sciences by categorizing variables into a framework that distinguishes between traits (e.g., body structure and personality) and states (e.g., heart rate and emotions). Furthermore, it delineates internal traits and states from the externalized self, which encompasses behaviour and performance. All three components—traits, states, and the externalized self—are in a continuous interplay with external physical, social, and circumstantial factors. Two core processes elucidate the interactions among these four primary clusters: external perception, encompassing the mechanism through which external stimuli transition into internal events, and self-regulation, which empowers individuals to become autonomous agents capable of exerting control over themselves and their actions. While the model inherently oversimplifies intricate processes, the central question remains: does its pragmatic utility outweigh its limitations, and can it serve as a valuable tool for comprehending human behaviour?
Characterising Representations of Goal Obstructiveness and Uncertainty Across Behavior, Physiology, and Brain Activity Through a Video Game Paradigm
The nature of emotions and their neural underpinnings remain debated. Appraisal theories such as the component process model propose that the perception and evaluation of events (appraisal) is the key to eliciting the range of emotions we experience. Here we study whether the framework of appraisal theories provides a clearer account for the differentiation of emotional episodes and their functional organisation in the brain. We developed a stealth game to manipulate appraisals in a systematic yet immersive way. The interactive nature of video games heightens self-relevance through the experience of goal-directed action or reaction, evoking strong emotions. We show that our manipulations led to changes in behaviour, physiology and brain activations.
Perceptions of responsiveness and rejection in romantic relationships. What are the implications for individuals and relationship functioning?
From birth, human beings need to be embedded into social ties to function best, because other individuals can provide us with a sense of belonging, which is a fundamental human need. One of the closest bonds we build throughout our life is with our intimate partners. When the relationship involves intimacy and when both partners accept and support each other’s needs and goals (through perceived responsiveness) individuals experience an increase in relationship satisfaction as well as physical and mental well-being. However, feeling rejected by a partner may impair the feeling of connectedness and belonging, and affect emotional and behavioural responses. When we perceive our partner to be responsive to our needs or desires, in turn we naturally strive to respond positively and adequately to our partner’s needs and desires. This implies that individuals are interdependent, and changes in one partner prompt changes in the other. Evidence suggests that partners regulate themselves and co-regulate each other in their emotional, psychological, and physiological responses. However, such processes may threaten the relationship when partners face stressful situations or interactions, like the transition to parenthood or rejection. Therefore, in this presentation, I will provide evidence for the role of perceptions of being accepted or rejected by a significant other on individual and relationship functioning, while considering the contextual settings. The three studies presented here explore romantic relationships, and how perceptions of rejection and responsiveness from the partner impact both individuals, their physiological and their emotional responses, as well as their relationship dynamics.
Investigating face processing impairments in Developmental Prosopagnosia: Insights from behavioural tasks and lived experience
The defining characteristic of development prosopagnosia is severe difficulty recognising familiar faces in everyday life. Numerous studies have reported that the condition is highly heterogeneous in terms of both presentation and severity with many mixed findings in the literature. I will present behavioural data from a large face processing test battery (n = 24 DPs) as well as some early findings from a larger survey of the lived experience of individuals with DP and discuss how insights from individuals' real-world experience can help to understand and interpret lab-based data.
The contribution of mental face representations to individual face processing abilities
People largely differ with respect to how well they can learn, memorize, and perceive faces. In this talk, I address two potential sources of variation. One factor might be people’s ability to adapt their perception to the kind of faces they are currently exposed to. For instance, some studies report that those who show larger adaptation effects are also better at performing face learning and memory tasks. Another factor might be people’s sensitivity to perceive fine differences between similar-looking faces. In fact, one study shows that the brain of good performers in a face memory task shows larger neural differences between similar-looking faces. Capitalizing on this body of evidence, I present a behavioural study where I explore the relationship between people’s perceptual adaptability and sensitivity and their individual face processing performance.
Representational Connectivity Analysis (RCA): a Method for Investigating Flow of Content-Specific Information in the Brain
Representational Connectivity Analysis (RCA) has gained mounting interest in the past few years. This is because, rather than conventional tracking of signal, RCA allows for the tracking of information across the brain. It can also provide insights into the content and potential transformations of the transferred information. This presentation explains several variations of the method in terms of implementation and how it can be adopted for different modalities (E/MEG and fMRI). I will also present caveats and nuances of the method which should be considered when using the RCA.
How AI is advancing Clinical Neuropsychology and Cognitive Neuroscience
This talk aims to highlight the immense potential of Artificial Intelligence (AI) in advancing the field of psychology and cognitive neuroscience. Through the integration of machine learning algorithms, big data analytics, and neuroimaging techniques, AI has the potential to revolutionize the way we study human cognition and brain characteristics. In this talk, I will highlight our latest scientific advancements in utilizing AI to gain deeper insights into variations in cognitive performance across the lifespan and along the continuum from healthy to pathological functioning. The presentation will showcase cutting-edge examples of AI-driven applications, such as deep learning for automated scoring of neuropsychological tests, natural language processing to characeterize semantic coherence of patients with psychosis, and other application to diagnose and treat psychiatric and neurological disorders. Furthermore, the talk will address the challenges and ethical considerations associated with using AI in psychological research, such as data privacy, bias, and interpretability. Finally, the talk will discuss future directions and opportunities for further advancements in this dynamic field.
The Effects of Negative Emotions on Mental Representation of Faces
Face detection is an initial step of many social interactions involving a comparison between a visual input and a mental representation of faces, built from previous experience. Whilst emotional state was found to affect the way humans attend to faces, little research has explored the effects of emotions on the mental representation of faces. Here, we examined the specific perceptual modulation of geometric properties of the mental representations associated with state anxiety and state depression on face detection, and to compare their emotional expression. To this end, we used an adaptation of the reverse correlation technique inspired by Gosselin and Schyns’, (2003) ‘Superstitious Approach’, to construct visual representations of observers’ mental representations of faces and to relate these to their mental states. In two sessions, on separate days, participants were presented with ‘colourful’ noise stimuli and asked to detect faces, which they were told were present. Based on the noise fragments that were identified as faces, we reconstructed the pictorial mental representation utilised by each participant in each session. We found a significant correlation between the size of the mental representation of faces and participants’ level of depression. Our findings provide a preliminary insight about the way emotions affect appearance expectation of faces. To further understand whether the facial expressions of participants’ mental representations reflect their emotional state, we are conducting a validation study with a group of naïve observers who are asked to classify the reconstructed face images by emotion. Thus, we assess whether the faces communicate participants’ emotional states to others.
Social Curiosity
In this lecture, I would like to share with the broad audience the empirical results gathered and the theoretical advancements made in the framework of the Lendület project entitled ’The cognitive basis of human sociality’. The main objective of this project was to understand the mechanisms that enable the unique sociality of humans, from the angle of cognitive science. In my talk, I will focus on recent empirical evidence in the study of three fundamental social cognitive functions (social categorization, theory of mind and social learning; mainly from the empirical lenses of developmental psychology) in order to outline a theory that emphasizes the need to consider their interconnectedness. The proposal is that the ability to represent the social world along categories and the capacity to read others’ minds are used in an integrated way to efficiently assess the epistemic states of fellow humans by creating a shared representational space. The emergence of this shared representational space is both the result of and a prerequisite to efficient learning about the physical and social environment.
The role of top-down mechanisms in gaze perception
Humans, as a social species, have an increased ability to detect and perceive visual elements involved in social exchanges, such as faces and eyes. The gaze, in particular, conveys information crucial for social interactions and social cognition. Researchers have hypothesized that in order to engage in dynamic face-to-face communication in real time, our brains must quickly and automatically process the direction of another person's gaze. There is evidence that direct gaze improves face encoding and attention capture and that direct gaze is perceived and processed more quickly than averted gaze. These results are summarized as the "direct gaze effect". However, in the recent literature, there is evidence to suggest that the mode of visual information processing modulates the direct gaze effect. In this presentation, I argue that top-down processing, and specifically the relevance of eye features to the task, promotes the early preferential processing of direct versus indirect gaze. On the basis of several recent evidences, I propose that low task relevance of eye features will prevent differences in eye direction processing between gaze directions because its encoding will be superficial. Differential processing of direct and indirect gaze will only occur when the eyes are relevant to the task. To assess the implication of task relevance on the temporality of cognitive processing, we will measure event-related potentials (ERPs) in response to facial stimuli. In this project, instead of typical ERP markers such as P1, N170 or P300, we will measure lateralized ERPs (lERPS) such as lateralized N170 and N2pc, which are markers of early face encoding and attentional deployment respectively. I hypothesize that the relevance of the eye feature task is crucial in the direct gaze effect and propose to revisit previous studies, which had questioned the existence of the direct gaze effect. This claim will be illustrate with different past studies and recent preliminary data of my lab. Overall, I propose a systematic evaluation of the role of top-down processing in early direct gaze perception in order to understand the impact of context on gaze perception and, at a larger scope, on social cognition.
Distributed and stable memory representations may lead to serial dependence
Perception and action are biased by our recent experiences. Even when a sequence of stimuli are randomly presented, responses are sometimes attracted toward the past. The mechanism of such bias, recently termed serial dependence, is still under investigation. Currently, there is mixed evidence indicating that such bias could be either from a sensory and perceptual origin or occurring only at decisional stages. In this talk, I will present recent findings from our group showing that biases are decreased when disrupting the memory trace in a premotor region in a simple visuomotor task. In addition, we have shown that this bias is stable over periods of up to 8 s. At the end, I will show ongoing analysis of a recent experiment and argue that serial dependence may rely on distributed memory representations of stimuli and task relevant features.
Untitled Seminar
The nature of facial information that is stored by humans to recognise large amounts of faces is unclear despite decades of research in the field. To complicate matters further, little is known about how representations may evolve as novel faces become familiar, and there are large individual differences in the ability to recognise faces. I will present a theory I am developing and that assumes that facial representations are cost-efficient. In that framework, individual facial representations would incorporate different diagnostic features in different faces, regardless of familiarity, and would evolve depending on the relative stability in appearance over time. Further, coarse information would be prioritised over fine details in order to decrease storage demands. This would create low-cost facial representations that refine over time if appearance changes. Individual differences could partly rest on that ability to refine representation if needed. I will present data collected in the general population and in participants with developmental prosopagnosia. In support of the proposed view, typical observers and those with developmental prosopagnosia seem to rely on coarse peripheral features when they have no reason to expect someone’s appearance will change in the future.
Identity-Expression Ambiguity in 3D Morphable Face Models
3D Morphable Models are my favorite class of generative models and are commonly used to model faces. They are typically applied to ill-posed problems such as 3D reconstruction from 2D data. I'll start my presentation with an introduction into 3D Morphable Models and show what they are capable of doing. I'll then focus on our recent finding, the Identity-Expression Ambiguity: We demonstrate that non-orthogonality of the variation in identity and expression can cause identity-expression ambiguity in 3D Morphable Models, and that in practice expression and identity are far from orthogonal and can explain each other surprisingly well. Whilst previously reported ambiguities only arise in an inverse rendering setting, identity-expression ambiguity emerges in the 3D shape generation process itself. The goal of this presentation is to demonstrate the ambiguity and discuss its potential consequences in a computer vision setting as well as for understanding face perception mechanisms in the human brain.
Leadership Support and Workplace Psychosocial Stressors
Research evidence indicates that psychosocial stressors such as work-life stress serves as a negative occupational exposure relating to poor health behaviors including smoking, poor food choices, low levels of exercise, and even decreased sleep time, as well as a number of chronic health outcomes. The association between work-life stress and adverse health behaviors and chronic health suggests that Occupational Health Psychology (OHP) interventions such as leadership support trainings may be helpful in mitigating effects of work-life stress and improving health, consistent with the Total Worker Health approach. This presentation will review workplace psychosocial stressors and leadership training approaches to reduces stress and improve health, highlighting a randomized controlled trial, the Military Employee Sleep and Health study.
Computational Models of Fine-Detail and Categorical Information in Visual Working Memory: Unified or Separable Representations?
When we remember a stimulus we rarely maintain a full fidelity representation of the observed item. Our working memory instead maintains a mixture of the observed feature values and categorical/gist information. I will discuss evidence from computational models supporting a mix of categorical and fine-detail information in working memory. Having established the need for two memory formats in working memory, I will discuss whether categorical and fine-detailed information for a stimulus are represented separately or as a single unified representation. Computational models of these two potential cognitive structures make differing predictions about the pattern of responses in visual working memory recall tests. The present study required participants to remember the orientation of stimuli for later reproduction. The pattern of responses are used to test the competing representational structures and to quantify the relative amount of fine-detailed and categorical information maintained. The effects of set size, encoding time, serial order, and response order on memory precision, categorical information, and guessing rates are also explored. (This is a 60 min talk).
The diachronic account of attentional selectivity
Many models of attention assume that attentional selection takes place at a specific moment in time which demarcates the critical transition from pre-attentive to attentive processing of sensory input. We argue that this intuitively appealing account is not only inaccurate, but has led to substantial conceptual confusion (to the point where some attention researchers offer to abandon the term ‘attention’ altogether). As an alternative, we offer a “diachronic” framework that describes attentional selectivity as a process that unfolds over time. Key to this view is the concept of attentional episodes, brief periods of intense attentional amplification of sensory representations that regulate access to working memory and response-related processes. We describe how attentional episodes are linked to earlier attentional mechanisms and to recurrent processing at the neural level. We present data showing that multiple sequential events can be involuntarily encoded in working memory when they appear during the same attentional episode, whether they are relevant or not. We also discuss the costs associated with processing multiple events within a single episode. Finally, we argue that breaking down the dichotomy between pre-attentive and attentive (as well as early vs. late selection) offers new solutions to old problems in attention research that have never been resolved. It can provide a unified and conceptually coherent account of the network of cognitive and neural processes that produce the goal-directed selectivity in perceptual processing that is commonly referred to as “attention”.
What are the consequences of directing attention within working memory?
The role of attention in working memory remains controversial, but there is some agreement on the notion that the focus of attention holds mnemonic representations in a privileged state of heightened accessibility in working memory, resulting in better memory performance for items that receive focused attention during retention. Closely related, representations held in the focus of attention are often observed to be robust and protected from degradation caused by either perceptual interference (e.g., Makovski & Jiang, 2007; van Moorselaar et al., 2015) or decay (e.g., Barrouillet et al., 2007). Recent findings indicate, however, that representations held in the focus of attention are particularly vulnerable to degradation, and thus, appear to be particularly fragile rather than robust (e.g., Hitch et al., 2018; Hu et al., 2014). The present set of experiments aims at understanding the apparent paradox of information in the focus of attention having a protected vs. vulnerable status in working memory. To that end, we examined the effect of perceptual interference on memory performance for information that was held within vs. outside the focus of attention, across different ways of bringing items in the focus of attention and across different time scales.
Age-related dedifferentiation across representational levels and their relation to memory performance
Episodic memory performance decreases with advancing age. According to theoretical models, such memory decline might be a consequence of age-related reductions in the ability to form distinct neural representations of our past. In this talk, I want to present our new age-comparative fMRI study investigating age-related neural dedifferentiation across different representational levels. By combining univariate analyses and searchlight pattern similarity analyses, we found that older adults show reduced category selective processing in higher visual areas, less specific item representations in occipital regions and less stable item representations. Dedifferentiation on all these representational levels was related to memory performance, with item specificity being the strongest contributor. Overall, our results emphasize that age-related dedifferentiation can be observed across the entire cortical hierarchy which may selectively impair memory performance depending on the memory task.
Statistical Summary Representations in Identity Learning: Exemplar-Independent Incidental Recognition
The literature suggests that ensemble coding, the ability to represent the gist of sets, may be an underlying mechanism for becoming familiar with newly encountered faces. This phenomenon was investigated by introducing a new training paradigm that involves incidental learning of target identities interspersed among distractors. The effectiveness of this training paradigm was explored in Study 1, which revealed that unfamiliar observers who learned the faces incidentally performed just as well as the observers who were instructed to learn the faces, and the intervening distractors did not disrupt familiarization. Using the same training paradigm, ensemble coding was investigated as an underlying mechanism for face familiarization in Study 2 by measuring familiarity with the targets at different time points using average images created either by seen or unseen encounters of the target. The results revealed that observers whose familiarity was tested using seen averages outperformed the observers who were tested using unseen averages, however, this discrepancy diminished over time. In other words, successful recognition of the target faces became less reliant on the previously encountered exemplars over time, suggesting an exemplar-independent representation that is likely achieved through ensemble coding. Taken together, the results from the current experiment provide direct evidence for ensemble coding as a viable underlying mechanism for face familiarization, that faces that are interspersed among distractors can be learned incidentally.
Exploring perceptual similarity and its relation to image-based spaces: an effect of familiarity
One challenge in exploring the internal representation of faces is the lack of controlled stimuli transformations. Researchers are often limited to verbalizable transformations in the creation of a dataset. An alternative approach to verbalization for interpretability is finding image-based measures that allow us to quantify image transformations. In this study, we explore whether PCA could be used to create controlled transformations to a face by testing the effect of these transformations on human perceptual similarity and on computational differences in Gabor, Pixel and DNN spaces. We found that perceptual similarity and the three image-based spaces are linearly related, almost perfectly in the case of the DNN, with a correlation of 0.94. This provides a controlled way to alter the appearance of a face. In experiment 2, the effect of familiarity on the perception of multidimensional transformations was explored. Our findings show that there is a positive relationship between the number of components transformed and both the perceptual similarity and the same three image-based spaces used in experiment 1. Furthermore, we found that familiar faces are rated more similar overall than unfamiliar faces. That is, a change to a familiar face is perceived as making less difference than the exact same change to an unfamiliar face. The ability to quantify, and thus control, these transformations is a powerful tool in exploring the factors that mediate a change in perceived identity.
Characterising the brain representations behind variations in real-world visual behaviour
Not all individuals are equally competent at recognizing the faces they interact with. Revealing how the brains of different individuals support variations in this ability is a crucial step to develop an understanding of real-world human visual behaviour. In this talk, I will present findings from a large high-density EEG dataset (>100k trials of participants processing various stimulus categories) and computational approaches which aimed to characterise the brain representations behind real-world proficiency of “super-recognizers”—individuals at the top of face recognition ability spectrum. Using decoding analysis of time-resolved EEG patterns, we predicted with high precision the trial-by-trial activity of super-recognizers participants, and showed that evidence for face recognition ability variations is disseminated along early, intermediate and late brain processing steps. Computational modeling of the underlying brain activity uncovered two representational signatures supporting higher face recognition ability—i) mid-level visual & ii) semantic computations. Both components were dissociable in brain processing-time (the first around the N170, the last around the P600) and levels of computations (the first emerging from mid-level layers of visual Convolutional Neural Networks, the last from a semantic model characterising sentence descriptions of images). I will conclude by presenting ongoing analyses from a well-known case of acquired prosopagnosia (PS) using similar computational modeling of high-density EEG activity.
Memory for Latent Representations: An Account of Working Memory that Builds on Visual Knowledge for Efficient and Detailed Visual Representations
Visual knowledge obtained from our lifelong experience of the world plays a critical role in our ability to build short-term memories. We propose a mechanistic explanation of how working memory (WM) representations are built from the latent representations of visual knowledge and can then be reconstructed. The proposed model, Memory for Latent Representations (MLR), features a variational autoencoder with an architecture that corresponds broadly to the human visual system and an activation-based binding pool of neurons that binds items’ attributes to tokenized representations. The simulation results revealed that shape information for stimuli that the model was trained on, can be encoded and retrieved efficiently from latents in higher levels of the visual hierarchy. On the other hand, novel patterns that are completely outside the training set can be stored from a single exposure using only latents from early layers of the visual system. Moreover, the representation of a given stimulus can have multiple codes, representing specific visual features such as shape or color, in addition to categorical information. Finally, we validated our model by testing a series of predictions against behavioral results acquired from WM tasks. The model provides a compelling demonstration of visual knowledge yielding the formation of compact visual representation for efficient memory encoding.
What the fluctuating impact of memory load on decision speed tells us about thinking
Previous work with complex memory span tasks, in which simple choice decisions are imposed between presentations of to-be-remembered items, shows that these secondary tasks reduce memory span. It is less clear how reconfiguring and maintaining various amounts of information affects decision speeds. We documented and replicated a non-linear effect of accumulating memory items on concurrent processing judgments, showing that this pattern could be made linear by introducing "lead-in" processing judgments prior to the start of the memory list. With lead-in judgments, there was a large and consistent cost to processing response times with the introduction of the first item in the memory list, which increased gradually per item as the list accumulated. However, once presentation of the list was complete, decision responses sped rapidly: within a few seconds, decisions were at least as fast as when remembering a single item. This pattern of findings is inconsistent with the idea that merely holding information in mind conflicts with attention-demanding decision tasks. Instead, it is possible that reconfiguring memory items for responding provokes conflict between memory and processing in complex span tasks.
Investigating visual recognition and the temporal lobes using electrophysiology and fast periodic visual stimulation
The ventral visual pathway extends from the occipital to the anterior temporal regions, and is specialized in giving meaning to objects and people that are perceived through vision. Numerous studies in functional magnetic resonance imaging have focused on the cerebral basis of visual recognition. However, this technique is susceptible to magnetic artefacts in ventral anterior temporal regions and it has led to an underestimation of the role of these regions within the ventral visual stream, especially with respect to face recognition and semantic representations. Moreover, there is an increasing need for implicit methods assessing these functions as explicit tasks lack specificity. In this talk, I will present three studies using fast periodic visual stimulation (FPVS) in combination with scalp and/or intracerebral EEG to overcome these limitations and provide high SNR in temporal regions. I will show that, beyond face recognition, FPVS can be extended to investigate semantic representations using a face-name association paradigm and a semantic categorisation paradigm with written words. These results shed new light on the role of temporal regions and demonstrate the high potential of the FPVS approach as a powerful electrophysiological tool to assess various cognitive functions in neurotypical and clinical populations.
Flexible codes and loci of visual working memory
Neural correlates of visual working memory have been found in early visual, parietal, and prefrontal regions. These findings have spurred fruitful debate over how and where in the brain memories might be represented. Here, I will present data from multiple experiments to demonstrate how a focus on behavioral requirements can unveil a more comprehensive understanding of the visual working memory system. Specifically, items in working memory must be maintained in a highly robust manner, resilient to interference. At the same time, storage mechanisms must preserve a high degree of flexibility in case of changing behavioral goals. Several examples will be explored in which visual memory representations are shown to undergo transformations, and even shift their cortical locus alongside their coding format based on specifics of the task.
Visual working memory representations are distorted by their use in perceptual comparisons
Visual working memory (VWM) allows us to maintain a small amount of task-relevant information in mind so that we can use them to guide our behavior. Although past studies have successfully characterized its capacity limit and representational quality during maintenance, the consequence of its usage for task-relevant behaviors has been largely unknown. In this talk, I will demonstrate that VWM representations get distorted when they are used for perceptual comparisons with new visual inputs, especially when the inputs are subjectively similar to the VWM representations. Furthermore, I will show that this similarity-induced memory bias (SIMB) occurs for both simple (e.g. , color, shape) and complex stimuli (e.g., real world objects, faces) that are perceptually encoded and retrieved from long-term memory. Given the observed versatility of the SIMB, its implication for other memory distortion phenomena (e.g., distractor-induced distortion, misinformation effect) will be discussed.
Perception, attention, visual working memory, and decision making: The complete consort dancing together
Our research investigates how processes of attention, visual working memory (VWM), and decision-making combine to translate perception into action. Within this framework, the role of VWM is to form stable representations of transient stimulus events that allow them to be identified by a decision process, which we model as a diffusion process. In psychophysical tasks, we find the capacity of VWM is well defined by a sample-size model, which attributes changes in VWM precision with set-size to differences in the number evidence samples recruited to represent stimuli. In the first part of the talk, I review evidence for the sample-size model and highlight the model's strengths: It provides a parameter-free characterization of the set-size effect; it has plausible neural and cognitive interpretations; an attention-weighted version of the model accounts for the power-law of VWM, and it accounts for the selective updating of VWM in multiple-look experiments. In the second part of the talk, I provide a characterization of the theoretical relationship between two-choice and continuous-outcome decision tasks using the circular diffusion model, highlighting their common features. I describe recent work characterizing the joint distributions of decision outcomes and response times in continuous-outcome tasks using the circular diffusion model and show that the model can clearly distinguish variable-precision and simple mixture models of the evidence entering the decision process. The ability to distinguish these kinds of processes is central to current VWM studies.
Getting to know you: emerging neural representations during face familiarization
The successful recognition of familiar persons is critical for social interactions. Despite extensive research on the neural representations of familiar faces, we know little about how such representations unfold as someone becomes familiar. In three EEG experiments, we elucidated how representations of face familiarity and identity emerge from different qualities of familiarization: brief perceptual exposure (Experiment 1), extensive media familiarization (Experiment 2) and real-life personal familiarization (Experiment 3). Time-resolved representational similarity analysis revealed that familiarization quality has a profound impact on representations of face familiarity: they were strongly visible after personal familiarization, weaker after media familiarization, and absent after perceptual familiarization. Across all experiments, we found no enhancement of face identity representation, suggesting that familiarity and identity representations emerge independently during face familiarization. Our results emphasize the importance of extensive, real-life familiarization for the emergence of robust face familiarity representations, constraining models of face perception and recognition memory.
The contribution of the dorsal visual pathway to perception and action
The human visual system enables us to recognize objects (e.g., this is a cup) and act upon them (e.g., grasp the cup) with astonishing ease and accuracy. For decades, it was widely accepted that these different functions rely on two separated cortical pathways. The ventral occipitotemporal pathway subserves object recognition, while the dorsal occipitoparietal pathway promotes visually guided actions. In my talk, I will discuss recent evidence from a series of neuropsychological, developmental and neuroimaging studies that were aimed to explore the nature of object representations in the dorsal pathway. The results from these studies highlight the plausible role of the dorsal pathway in object perception and reveal an interplay between shape representations derived by the two pathways. Together, these findings challenge the binary distinction between the two pathways and are consistent with the view that object recognition is not the sole product of ventral pathway computations, but instead relies on a distributed network of regions.
Exploring Memories of Scenes
State-of-the-art machine vision models can predict human recognition memory for complex scenes with astonishing accuracy. In this talk I present work that investigated how memorable scenes are actually remembered and experienced by human observers. We found that memorable scenes were recognized largely based on recollection of specific episodic details but also based on familiarity for an entire scene. I thus highlight current limitations in machine vision models emulating human recognition memory, with promising opportunities for future research. Moreover, we were interested in what observers specifically remember about complex scenes. We thus considered the functional role of eye-movements as a window into the content of memories, particularly when observers recollected specific information about a scene. We found that when observers formed a memory representation that they later recollected (compared to scenes that only felt familiar), the overall extent of exploration was broader, with a specific subset of fixations clustered around later to-be-recollected scene content, irrespective of the memorability of a scene. I discuss the critical role that our viewing behavior plays in visual memory formation and retrieval and point to potential implications for machine vision models predicting the content of human memories.
presentation coverage
36 items