Latest

SeminarPsychologyRecording

What the fluctuating impact of memory load on decision speed tells us about thinking

Candice C. Morey
Cardiff University
Jul 1, 2021

Previous work with complex memory span tasks, in which simple choice decisions are imposed between presentations of to-be-remembered items, shows that these secondary tasks reduce memory span. It is less clear how reconfiguring and maintaining various amounts of information affects decision speeds. We documented and replicated a non-linear effect of accumulating memory items on concurrent processing judgments, showing that this pattern could be made linear by introducing "lead-in" processing judgments prior to the start of the memory list. With lead-in judgments, there was a large and consistent cost to processing response times with the introduction of the first item in the memory list, which increased gradually per item as the list accumulated. However, once presentation of the list was complete, decision responses sped rapidly: within a few seconds, decisions were at least as fast as when remembering a single item. This pattern of findings is inconsistent with the idea that merely holding information in mind conflicts with attention-demanding decision tasks. Instead, it is possible that reconfiguring memory items for responding provokes conflict between memory and processing in complex span tasks.

SeminarPsychology

Perception, attention, visual working memory, and decision making: The complete consort dancing together

Philip Smith
The University of Melbourne
Jun 17, 2021

Our research investigates how processes of attention, visual working memory (VWM), and decision-making combine to translate perception into action. Within this framework, the role of VWM is to form stable representations of transient stimulus events that allow them to be identified by a decision process, which we model as a diffusion process. In psychophysical tasks, we find the capacity of VWM is well defined by a sample-size model, which attributes changes in VWM precision with set-size to differences in the number evidence samples recruited to represent stimuli. In the first part of the talk, I review evidence for the sample-size model and highlight the model's strengths: It provides a parameter-free characterization of the set-size effect; it has plausible neural and cognitive interpretations; an attention-weighted version of the model accounts for the power-law of VWM, and it accounts for the selective updating of VWM in multiple-look experiments. In the second part of the talk, I provide a characterization of the theoretical relationship between two-choice and continuous-outcome decision tasks using the circular diffusion model, highlighting their common features. I describe recent work characterizing the joint distributions of decision outcomes and response times in continuous-outcome tasks using the circular diffusion model and show that the model can clearly distinguish variable-precision and simple mixture models of the evidence entering the decision process. The ability to distinguish these kinds of processes is central to current VWM studies.

response times coverage

2 items

Seminar2
Domain spotlight

Explore how response times research is advancing inside Psychology.

Visit domain