ePoster

Adhesion dynamics in the neocortex determine the start of migration and the post-migratory orientation of neurons

Elisa Pedersen, Ekaterina Epifanova, Valentina Salina, Denis Lajkó, Kathrin Textoris-Taube, Thomas Naumann, Olga Bormuth, Ingo Bormuth, Stephen Horan, Theres Schaub, Ekaterina Borisova, Mateusz C. Ambrozkiewicz, Victor Tarabykin, Marta Rosário
FENS Forum 2024(2024)
Messe Wien Exhibition & Congress Center, Vienna, Austria

Conference

FENS Forum 2024

Messe Wien Exhibition & Congress Center, Vienna, Austria

Resources

Authors & Affiliations

Elisa Pedersen, Ekaterina Epifanova, Valentina Salina, Denis Lajkó, Kathrin Textoris-Taube, Thomas Naumann, Olga Bormuth, Ingo Bormuth, Stephen Horan, Theres Schaub, Ekaterina Borisova, Mateusz C. Ambrozkiewicz, Victor Tarabykin, Marta Rosário

Abstract

The neocortex is stereotypically organized into layers of excitatory neurons arranged in a precise parallel orientation. Here we show that dynamic adhesion both preceding and following radial migration is essential for this organization. Neuronal adhesion is regulated by the Mowat-Wilson syndrome-associated transcription factor Zeb2 (Sip1/Zfhx1b) through direct repression of independent adhesion pathways controlled by Neuropilin-1 (Nrp1) and Cadherin-6 (Cdh6). We reveal that to initiate radial migration, neurons must first suppress adhesion to the extracellular matrix. Zeb2 regulates the multipolar stage by transcriptional repression of Nrp1 and thereby downstream inhibition of integrin signaling. Upon completion of migration, neurons undergo an orientation process that is independent of migration. The parallel organization of neurons within the neocortex is controlled by Cdh6 through atypical regulation of integrin signaling via its RGD motif. Our data shed light on the mechanisms that regulate initiation of radial migration and the postmigratory orientation of neurons during neocortical development.

Unique ID: fens-24/adhesion-dynamics-neocortex-determine-764d696e