ePoster

GABAB receptors induce phasic release from medial habenula terminals through activity-dependent recruitment of release-ready vesicles

Peter Koppensteinerand 13 co-authors

Presenting Author

Conference
FENS Forum 2024 (2024)
Messe Wien Exhibition & Congress Center, Vienna, Austria

Conference

FENS Forum 2024

Messe Wien Exhibition & Congress Center, Vienna, Austria

Resources

Authors & Affiliations

Peter Koppensteiner, Pradeep Bhandari, Cihan Önal, Carolina Borges-Merjane, Elodie Le Monnier, Utsa Roy, Yukihiro Nakamura, Tetsushi Sadakata, Makoto Sanbo, Masumi Hirabayashi, JeongSeop Rhee, Nils Brose, Peter Jonas, Ryuichi Shigemoto

Abstract

GABAB receptor (GBR) activation inhibits neurotransmitter release in axon terminals in the brain, except in medial habenula (MHb) terminals, which show robust potentiation. However, mechanisms underlying this enigmatic potentiation remain elusive. Here, we report that GBR activation on MHb terminals induces an activity-dependent transition from a facilitating, tonic to a depressing, phasic neurotransmitter release mode. This transition is accompanied by a 4.1-fold increase in readily releasable vesicle pool (RRP) size and a 3.5-fold increase of docked synaptic vesicles at the presynaptic active zone (AZ). Strikingly, the depressing phasic release exhibits looser coupling distance than the tonic release. Furthermore, the tonic and phasic release are selectively affected by deletion of synaptoporin (SPO) and Ca2+-dependent activator protein for secretion 2 (CAPS2), respectively. SPO modulates augmentation, the short-term plasticity associated with tonic release, and CAPS2 retains the increased RRP for initial responses in phasic response trains. The cytosolic protein CAPS2 showed a synaptic vesicle (SV)-associated distribution similar to the vesicular transmembrane protein SPO, and they were co-localized in the same terminals. A newly developed “Flash and Freeze-fracture” method revealed the release of SPO-associated vesicles in both tonic and phasic modes and activity-dependent recruitment of CAPS2 to the AZ during phasic release, which lasted several minutes. Overall, these results indicate that GBR activation translocates CAPS2 to the AZ along with the fusion of CAPS2-associated SVs, contributing to persistency of the RRP increase. Thus, we discovered structural and molecular mechanisms underlying tonic and phasic neurotransmitter release and their transition by GBR activation in MHb terminals.

Unique ID: fens-24/gabab-receptors-induce-phasic-release-eb6514a4