World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
Dr
University of Western Ontario
Showing your local timezone
Schedule
Wednesday, June 17, 2020
2:00 AM America/New_York
Seminar location
No geocoded details are available for this content yet.
Recording provided by the organiser.
Format
Recorded Seminar
Recording
Available
Host
Systems Neuroecology
Duration
70.00 minutes
Seminar location
No geocoded details are available for this content yet.
The dominant view of perception right now is that information travels from the environment to the sensory system, then to the nervous systems which processes it to generate a percept and behaviour. Ongoing behaviour is thought to occur largely through simple iterations of this process. However, this linear view, where information flows only in one direction and the properties of the environment and the sensory system remain static and unaffected by behaviour, is slowly fading. Many of us are beginning to appreciate that perception is largely active, i.e. that information flows back and forth between the three systems modulating their respective properties. In other words, in the real world, the environment and sensorimotor loop is pretty much always closed. I study the loop; in particular I study how the reverse arm of the loop affects sound and vibration perception. I will present two examples of motor modulation of perception at two very different temporal and spatial scales. First, in crickets, I will present data on how high-speed molecular motor activity enhances hearing via the well-studied phenomenon of active amplification. Second, in spiders I will present data on how body posture, a slow macroscopic feature, which can barely be called ‘active’, can nonetheless modulate vibration perception. I hope these results will motivate a conversation about whether ‘active’ perception is an optional feature observed in some sensory systems, or something that is ultimately necessitated by both evolution and physics.
Natasha Mhatre
Dr
University of Western Ontario
neuro
Decades of research on understanding the mechanisms of attentional selection have focused on identifying the units (representations) on which attention operates in order to guide prioritized sensory p
neuro
neuro