World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
Dr
New York University
Showing your local timezone
Schedule
Tuesday, May 5, 2020
12:00 PM America/New_York
Seminar location
No geocoded details are available for this content yet.
Format
Past Seminar
Recording
Not available
Host
Systems Neuroecology
Seminar location
No geocoded details are available for this content yet.
Olfactory navigation provides a tractable model for studying the circuit basis of sensori-motor transformations and goal-directed behaviour. Macroscopic organisms typically navigate in odor plumes that provide a noisy and uncertain signal about the location of an odor source. Work in many species has suggested that animals accomplish this task by combining temporal processing of dynamic odor information with an estimate of wind direction. Our lab has been using adult walking Drosophila to understand both the computational algorithms and the neural circuits that support navigation in a plume of attractive food odor. We developed a high-throughput paradigm to study behavioural responses to temporally-controlled odor and wind stimuli. Using this paradigm we found that flies respond to a food odor (apple cider vinegar) with two behaviours: during the odor they run upwind, while after odor loss they perform a local search. A simple computational model based one these two responses is sufficient to replicate many aspects of fly behaviour in a natural turbulent plume. In on-going work, we are seeking to identify the neural circuits and biophysical mechanisms that perform the computations delineated by our model. Using electrophysiology, we have identified mechanosensory neurons that compute wind direction from movements of the two antennae and central mechanosensory neurons that encode wind direction are are involved in generating a stable downwind orientation. Using optogenetic activation, we have traced olfactory circuits capable of evoking upwind orientation and offset search from the periphery, through the mushroom body and lateral horn, to the central complex. Finally, we have used optogenetic activation, in combination with molecular manipulation of specific synapses, to localize temporal computations performed on the odor signal to olfactory transduction and transmission at specific synapses. Our work illustrates how the tools available in fruit fly can be applied to dissect the mechanisms underlying a complex goal-directed behaviour.
Katherine Nagel
Dr
New York University
Contact & Resources
neuro
neuro
The development of the iPS cell technology has revolutionized our ability to study development and diseases in defined in vitro cell culture systems. The talk will focus on Rett Syndrome and discuss t
neuro
Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzhe