World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
Malenka lab, Stanford University
Showing your local timezone
Schedule
Wednesday, April 7, 2021
7:00 PM Europe/Berlin
Seminar location
No geocoded details are available for this content yet.
Recording provided by the organiser.
Format
Recorded Seminar
Recording
Available
Host
WWNeuRise
Duration
35.00 minutes
Seminar location
No geocoded details are available for this content yet.
Empathy plays a critical role in social interactions, and many species, including rodents, display evolutionarily conserved behavioral antecedents of empathy. In both humans and rodents, the anterior cingulate cortex (ACC) encodes information about the affective state of others. However, little is known about which downstream targets of the ACC contribute to empathy behaviors. We optimized a protocol for the social transfer of pain behavior in mice and compared the ACC-dependent neural circuitry responsible for this behavior with the neural circuitry required for the social transfer of two related states: analgesia and fear. We found that a 1-hour social interaction between a bystander mouse and a cagemate experiencing inflammatory pain led to congruent mechanical hyperalgesia in the bystander. This social transfer led to activation of neurons in the ACC and several downstream targets, including the nucleus accumbens (NAc), which was revealed by monosynaptic rabies virus tracing to be directly connected to the ACC. Bidirectional manipulation of activity in ACC-to-NAc inputs influenced the acquisition of socially transferred pain. Further, the social transfer of analgesia also depended upon ACC-NAc inputs. By contrast, the social transfer of fear instead required activity in ACC projections to the basolateral amygdala. This shows that mice rapidly adopt the sensory-affective state of a social partner, regardless of the valance of the information (pain, fear, or pain relief). We find that the ACC generates specific and appropriate empathic behavioral responses through distinct downstream targets. More sophisticated understanding of evolutionarily conserved brain mechanisms of empathy will also expedite the development of new therapies for the empathy-related deficits associated with a broad range of neuropsychiatric disorders.
Monique Smith
Malenka lab, Stanford University
neuro
Decades of research on understanding the mechanisms of attentional selection have focused on identifying the units (representations) on which attention operates in order to guide prioritized sensory p
neuro
neuro