Platform

  • Search
  • Seminars
  • Conferences
  • Jobs

Resources

  • Submit Content
  • About Us

© 2025 World Wide

Open knowledge for all • Started with World Wide Neuro • A 501(c)(3) Non-Profit Organization

Analytics consent required

World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.

Review the Privacy Policy for details about analytics processing.

World Wide
SeminarsConferencesWorkshopsCoursesJobsMapsFeedLibrary
Back to SeminarsBack
Seminar✓ Recording AvailablePhysics of Life

Bend, slip, or break?

Karen Daniels

Prof

NC State University

Schedule
Wednesday, March 3, 2021

Showing your local timezone

Schedule

Wednesday, March 3, 2021

2:00 AM America/New_York

Watch recording
Host: NYU Soft Matter Seminar

Watch the seminar

Your browser does not support the video tag.

Recording provided by the organiser.

Event Information

Domain

Physics of Life

Original Event

View source

Host

NYU Soft Matter Seminar

Duration

70 minutes

Abstract

Rigidity is the ability of a system to resist imposed stresses before ultimately undergoing failure. However, disordered materials often contain both rigid and floppy subregions that complicate the utility of taking system-wide averages. I will talk about 3 frameworks capable of connecting the internal structure of disordered materials to their rigidity and/or failure under loading, and describe how my collaborators and I have applied these frameworks to laboratory data on laser-cut lattices and idealized granular materials. These are, in order of increasing physics content: (1) centrality within an adjacency matrix describing its connectivity, (2) Maxwell constraint counting on the full network of frictional contact forces, and (3) the vibrational modes of a synthetic dynamical matrix (Hessian). The first two rely primarily on topology, and the second two contrast the utility of considering interparticle forces (Coulomb failure) vs. the energy landscape. All three methods, while successfully elucidating the origins of rigidity and brittle vs. ductile failure, also provide interesting counterpoints regarding how much information is enough to make predictions.

Topics

adjacency matrixcoulomb failuredisordered materialsfailurelaser-cut latticesmaxwell constraint countingrigiditysoft mattersynthetic dynamical matrixvibrational modes

About the Speaker

Karen Daniels

Prof

NC State University

Contact & Resources

Personal Website

danielslab.physics.ncsu.edu/people/karen-daniels/

Related Seminars

Seminar60%

Pancreatic Opioids Regulate Ingestive and Metabolic Phenotypes

neuro

Jan 12, 2025
Washington University in St. Louis
Seminar60%

The Role of GPCR Family Mrgprs in Itch, Pain, and Innate Immunity

neuro

Jan 12, 2025
Johns Hopkins University
Seminar60%

Exploration and Exploitation in Human Joint Decisions

neuro

Jan 12, 2025
Munich
January 2026
Full calendar →