World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
Prof
NC State University
Showing your local timezone
Schedule
Wednesday, March 3, 2021
3:00 AM America/New_York
Seminar location
No geocoded details are available for this content yet.
Recording provided by the organiser.
Format
Recorded Seminar
Recording
Available
Host
NYU Soft Matter Seminar
Duration
70.00 minutes
Seminar location
No geocoded details are available for this content yet.
Rigidity is the ability of a system to resist imposed stresses before ultimately undergoing failure. However, disordered materials often contain both rigid and floppy subregions that complicate the utility of taking system-wide averages. I will talk about 3 frameworks capable of connecting the internal structure of disordered materials to their rigidity and/or failure under loading, and describe how my collaborators and I have applied these frameworks to laboratory data on laser-cut lattices and idealized granular materials. These are, in order of increasing physics content: (1) centrality within an adjacency matrix describing its connectivity, (2) Maxwell constraint counting on the full network of frictional contact forces, and (3) the vibrational modes of a synthetic dynamical matrix (Hessian). The first two rely primarily on topology, and the second two contrast the utility of considering interparticle forces (Coulomb failure) vs. the energy landscape. All three methods, while successfully elucidating the origins of rigidity and brittle vs. ductile failure, also provide interesting counterpoints regarding how much information is enough to make predictions.
Karen Daniels
Prof
NC State University
Contact & Resources
neuro
Decades of research on understanding the mechanisms of attentional selection have focused on identifying the units (representations) on which attention operates in order to guide prioritized sensory p
neuro
neuro