Platform

  • Search
  • Seminars
  • Conferences
  • Jobs

Resources

  • Submit Content
  • About Us

© 2025 World Wide

Open knowledge for all • Started with World Wide Neuro • A 501(c)(3) Non-Profit Organization

Analytics consent required

World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.

Review the Privacy Policy for details about analytics processing.

World Wide
SeminarsConferencesWorkshopsCoursesJobsMapsFeedLibrary
← Back

Cellular Circuit Dysfunction Model

Back to SeminarsBack
SeminarPast EventNeuroscience

Cellular/circuit dysfunction in a model of Dravet syndrome - a severe childhood epilepsy

Ethan M. Goldberg, MD, PhD

Prof

The Children's Hospital of Philadelphia

Schedule
Tuesday, March 17, 2020

Showing your local timezone

Schedule

Tuesday, March 17, 2020

11:00 AM Europe/London

Host: The Neurotheory Forum

Seminar location

Seminar location

Not provided

No geocoded details are available for this content yet.

Access Seminar

Event Information

Format

Past Seminar

Recording

Not available

Host

The Neurotheory Forum

Duration

70.00 minutes

Seminar location

Seminar location

Not provided

No geocoded details are available for this content yet.

World Wide map

Abstract

Dravet syndrome is a severe childhood epilepsy due to heterozygous loss-of-function mutation of the gene SCN1A, which encodes the type 1 neuronal voltage gated sodium (Na+) channel alpha-subunit Nav1.1. Prior studies in mouse models of Dravet syndrome (Scn1a+/- mice) at early developmental time points indicate that, in cerebral cortex, Nav1.1 is predominantly expressed in GABAergic interneurons (INs) and, in particular, in parvalbumin-positive fast-spiking basket cells (PV-INs). This has led to a model of Dravet syndrome pathogenesis whereby Nav1.1 mutation leads to preferential IN dysfunction, decreased synaptic inhibition, hyperexcitability, and epilepsy. We found that, at later developmental time points, the intrinsic excitability of PV-INs has essentially normalized, via compensatory reorganization of axonal Na+ channels. Instead, we found persistent and seemingly paradoxical dysfunction of putative disinhibitory INs expressing vasoactive intestinal peptide (VIP-INs). In vivo two-photon calcium imaging in neocortex during temperature-induced seizures in Scn1a+/- mice showed that mean activity of both putative principal cells and PV-INs was higher in Scn1a+/- relative to wild-type controls during quiet wakefulness at baseline and at elevated core body temperature. However, wild-type PV-INs showed a progressive synchronization in response to temperature elevation that was absent in PV-INs from Scn1a+/- mice immediately prior to seizure onset. We suggest that impaired PV-IN synchronization, perhaps via persistent axonal dysfunction, may contribute to the transition to the ictal state during temperature induced seizures in Dravet syndrome.

Topics

GABAergic interneuronsSCN1Adiseasedisinhibitory interneuronsdravet syndromeexcitabilitynav11parvalbumin-positiveseizuresvasoactive intestinal peptide

About the Speaker

Ethan M. Goldberg, MD, PhD

Prof

The Children's Hospital of Philadelphia

Contact & Resources

Personal Website

goldbergneurolab.com

@Go3than

Follow on Twitter/X

twitter.com/Go3than

Related Seminars

Seminar64% match - Relevant

Rethinking Attention: Dynamic Prioritization

neuro

Decades of research on understanding the mechanisms of attentional selection have focused on identifying the units (representations) on which attention operates in order to guide prioritized sensory p

Jan 6, 2025
George Washington University
Seminar64% match - Relevant

The Cognitive Roots of the Problem of Free Will

neuro

Jan 7, 2025
Bielefeld & Amsterdam
Seminar64% match - Relevant

Memory Colloquium Lecture

neuro

Jan 8, 2025
Keio University, Tokyo
World Wide calendar

World Wide highlights

December 2025 • Syncing the latest schedule.

View full calendar
Awaiting featured picks
Month at a glance

Upcoming highlights