Platform

  • Search
  • Seminars
  • Conferences
  • Jobs

Resources

  • Submit Content
  • About Us

© 2025 World Wide

Open knowledge for all • Started with World Wide Neuro • A 501(c)(3) Non-Profit Organization

Analytics consent required

World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.

Review the Privacy Policy for details about analytics processing.

World Wide
SeminarsConferencesWorkshopsCoursesJobsMapsFeedLibrary
Back to SeminarsBack
Seminar✓ Recording AvailableNeuroscience

Fast and deep neuromorphic learning with time-to-first-spike coding

Julian Goeltz

PhDc

Universität Bern

Schedule
Tuesday, September 1, 2020

Showing your local timezone

Schedule

Tuesday, September 1, 2020

6:55 PM Europe/Berlin

Watch recording
Host: SNUFA

Watch the seminar

Recording provided by the organiser.

Event Information

Domain

Neuroscience

Original Event

View source

Host

SNUFA

Duration

70 minutes

Abstract

Engineered pattern-recognition systems strive for short time-to-solution and low energy-to-solution characteristics. This represents one of the main driving forces behind the development of neuromorphic devices. For both them and their biological archetypes, this corresponds to using as few spikes as early as possible. The concept of few and early spikes is used as the founding principle in the time-to-first-spike coding scheme. Within this framework, we have developed a spike-timing-based learning algorithm, which we used to train neuronal networks on the mixed-signal neuromorphic platform BrainScaleS-2. We derive, from first principles, error-backpropagation-based learning in networks of leaky integrate-and-fire (LIF) neurons relying only on spike times, for specific configurations of neuronal and synaptic time constants. We explicitly examine applicability to neuromorphic substrates by studying the effects of reduced weight precision and range, as well as of parameter noise. We demonstrate the feasibility of our approach on continuous and discrete data spaces, both in software simulations and on BrainScaleS-2. This narrows the gap between previous models of first-spike-time learning and biological neuronal dynamics and paves the way for fast and energy-efficient neuromorphic applications.

Topics

BrainScaleS-2energy-efficiencyerror backpropagationintegrate-and-fireleaky integrate-and-fireneuromorphic computingneuromorphic learningneuronal networksparameter noisespike-timingspike-timing-based learningtime-to-first-spiketime-to-first-spike codingweight precision

About the Speaker

Julian Goeltz

PhDc

Universität Bern

Contact & Resources

Personal Website

physio.unibe.ch/~goeltz/

@JulianGoelz

Follow on Twitter/X

twitter.com/JulianGoelz

Related Seminars

Seminar60%

Knight ADRC Seminar

neuro

Jan 20, 2025
Washington University in St. Louis, Neurology
Seminar60%

TBD

neuro

Jan 20, 2025
King's College London
Seminar60%

Guiding Visual Attention in Dynamic Scenes

neuro

Jan 20, 2025
Haifa U
January 2026
Full calendar →