Platform

  • Search
  • Seminars
  • Conferences
  • Jobs

Resources

  • Submit Content
  • About Us

© 2025 World Wide

Open knowledge for all • Started with World Wide Neuro • A 501(c)(3) Non-Profit Organization

Analytics consent required

World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.

Review the Privacy Policy for details about analytics processing.

World Wide
SeminarsConferencesWorkshopsCoursesJobsMapsFeedLibrary
← Back

Flexible Multitask Computation Recurrent

Back to SeminarsBack
SeminarPast EventNeuroscience

Flexible multitask computation in recurrent networks utilizes shared dynamical motifs

Laura Driscoll

Dr

Stanford University

Schedule
Friday, August 26, 2022

Showing your local timezone

Schedule

Saturday, August 27, 2022

3:00 AM Australia/Sydney

Host: Sydney Systems Neuroscience and Complexity SNAC

Seminar location

Seminar location

Not provided

No geocoded details are available for this content yet.

Access Seminar

Event Information

Format

Past Seminar

Recording

Not available

Host

Sydney Systems Neuroscience and Complexity SNAC

Duration

60.00 minutes

Seminar location

Seminar location

Not provided

No geocoded details are available for this content yet.

World Wide map

Abstract

Flexible computation is a hallmark of intelligent behavior. Yet, little is known about how neural networks contextually reconfigure for different computations. Humans are able to perform a new task without extensive training, presumably through the composition of elementary processes that were previously learned. Cognitive scientists have long hypothesized the possibility of a compositional neural code, where complex neural computations are made up of constituent components; however, the neural substrate underlying this structure remains elusive in biological and artificial neural networks. Here we identified an algorithmic neural substrate for compositional computation through the study of multitasking artificial recurrent neural networks. Dynamical systems analyses of networks revealed learned computational strategies that mirrored the modular subtask structure of the task-set used for training. Dynamical motifs such as attractors, decision boundaries and rotations were reused across different task computations. For example, tasks that required memory of a continuous circular variable repurposed the same ring attractor. We show that dynamical motifs are implemented by clusters of units and are reused across different contexts, allowing for flexibility and generalization of previously learned computation. Lesioning these clusters resulted in modular effects on network performance: a lesion that destroyed one dynamical motif only minimally perturbed the structure of other dynamical motifs. Finally, modular dynamical motifs could be reconfigured for fast transfer learning. After slow initial learning of dynamical motifs, a subsequent faster stage of learning reconfigured motifs to perform novel tasks. This work contributes to a more fundamental understanding of compositional computation underlying flexible general intelligence in neural systems. We present a conceptual framework that establishes dynamical motifs as a fundamental unit of computation, intermediate between the neuron and the network. As more whole brain imaging studies record neural activity from multiple specialized systems simultaneously, the framework of dynamical motifs will guide questions about specialization and generalization across brain regions.

Topics

attractorscompositional computationcomputationdecision boundariesdynamical motifsflexible computationmodularitynetwork reconfigurationneural networksrecurrent neural networkstask-settransfer learning

About the Speaker

Laura Driscoll

Dr

Stanford University

Contact & Resources

@lndriscoll

Follow on Twitter/X

twitter.com/lndriscoll

Related Seminars

Seminar64% match - Relevant

Rethinking Attention: Dynamic Prioritization

neuro

Decades of research on understanding the mechanisms of attentional selection have focused on identifying the units (representations) on which attention operates in order to guide prioritized sensory p

Jan 6, 2025
George Washington University
Seminar64% match - Relevant

The Cognitive Roots of the Problem of Free Will

neuro

Jan 7, 2025
Bielefeld & Amsterdam
Seminar64% match - Relevant

Memory Colloquium Lecture

neuro

Jan 8, 2025
Keio University, Tokyo
World Wide calendar

World Wide highlights

December 2025 • Syncing the latest schedule.

View full calendar
Awaiting featured picks
Month at a glance

Upcoming highlights