Platform

  • Search
  • Seminars
  • Conferences
  • Jobs

Resources

  • Submit Content
  • About Us

© 2025 World Wide

Open knowledge for all • Started with World Wide Neuro • A 501(c)(3) Non-Profit Organization

Analytics consent required

World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.

Review the Privacy Policy for details about analytics processing.

World Wide
SeminarsConferencesWorkshopsCoursesJobsMapsFeedLibrary
← Back

Flow Singularities Soft Materials

Back to SeminarsBack
Seminar✓ Recording AvailablePhysics of Life

Flow singularities in soft materials: from thermal motion to active molecular stresses

Mehdi Molaei

Dr.

Pritzker School of Molecular Engineering, University of Chicago

Schedule
Sunday, August 15, 2021

Showing your local timezone

Schedule

Sunday, August 15, 2021

9:00 AM America/Los_Angeles

Watch recording
Host: SLAAM by UC Merced

Seminar location

Seminar location

Not provided

No geocoded details are available for this content yet.

Watch the seminar

Your browser does not support the video tag.

Recording provided by the organiser.

Event Information

Format

Recorded Seminar

Recording

Available

Host

SLAAM by UC Merced

Seminar location

Seminar location

Not provided

No geocoded details are available for this content yet.

World Wide map

Abstract

The motion of passive or active agents in soft materials generates long ranged deformation fields with signatures informed by hydrodynamics and the properties of the soft matter host. These signatures are even more complex when the soft matter host itself is an active material. Measurement of these fields reveals mechanics of the soft materials and hydrodynamics central to understanding self-organization. In this talk, I first introduce a new method based on correlated displacement velocimetry, and use the method to measure flow fields around particles trapped at the interface between immiscible fluids. These flow fields, decomposed into interfacial hydrodynamic multipoles, including force monopole and dipole flows, provide key insights essential to understanding the interface’s mechanical response. I then extend this method to various actomyosin systems to measure local strain fields around myosin molecular motors. I show how active stresses propagate in 2d liquid crystalline structures and in disordered networks that are formed by the actin filaments. In particular, the response functions of contractile and stable gels are characterized. Through similar analysis, I also measure the retrograde flow fields of stress fibers in single cells to understand subcellular mechanochemical systems.

Topics

active materialsactomyosin systemscorrelated displacement velocimetryflow fieldshydrodynamicsinterfacial hydrodynamic multipolesmolecular motorsretrograde flowself-organizationssoft materialssoft-materials

About the Speaker

Mehdi Molaei

Dr.

Pritzker School of Molecular Engineering, University of Chicago

Contact & Resources

Personal Website

www.linkedin.com/in/mehdi-molaei/

Related Seminars

Seminar42% match - Relevant

Towards open meta-research in neuroimaging

open source

When meta-research (research on research) makes an observation or points out a problem (such as a flaw in methodology), the project should be repeated later to determine whether the problem remains. F

Dec 8, 2024
ORIGAMI - Neural data science - https://neurodatascience.github.io/
Seminar42% match - Relevant

Continuous guidance of human goal-directed movements

neuro

Dec 9, 2024
VU University Amsterdam
Seminar42% match - Relevant

Genetic and epigenetic underpinnings of neurodegenerative disorders

neuro

Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzhe

Dec 10, 2024
MIT Department of Biology
World Wide calendar

World Wide highlights

December 2025 • Syncing the latest schedule.

View full calendar
Awaiting featured picks
Month at a glance

Upcoming highlights