World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
Director, CHINTA, TCG Centres for Research and Education in Science & Technology, Kolkata, India & Visiting Professor, Simons Initiative for the Developing Brain, University of Edinburgh, UK
Showing your local timezone
Schedule
Wednesday, June 21, 2023
4:00 PM Europe/Zurich
Seminar location
No geocoded details are available for this content yet.
Format
Past Seminar
Recording
Not available
Host
NeuroLeman Network
Seminar location
No geocoded details are available for this content yet.
Individuals afflicted with certain types of autism spectrum disorder often exhibit impaired cognitive function alongside enhanced emotional symptoms and mood lability. However, current understanding of the pathogenesis of autism and intellectual disabilities is based primarily on studies in the hippocampus and cortex, brain areas involved in cognitive function. But, these disorders are also associated with strong emotional symptoms, which are likely to involve changes in the amygdala and other brain areas. In this talk I will highlight these issues by presenting analyses in rat models of ASD/ID lacking Nlgn3 and Frm1 (causing Fragile X Syndrome). In addition to identifying new circuit and cellular alterations underlying divergent patterns of fear expression, these findings also suggest novel therapeutic strategies.
Sumantra “Shona” Chattarji
Director, CHINTA, TCG Centres for Research and Education in Science & Technology, Kolkata, India & Visiting Professor, Simons Initiative for the Developing Brain, University of Edinburgh, UK
Contact & Resources
neuro
neuro
The development of the iPS cell technology has revolutionized our ability to study development and diseases in defined in vitro cell culture systems. The talk will focus on Rett Syndrome and discuss t
neuro
Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzhe