Platform

  • Search
  • Seminars
  • Conferences
  • Jobs

Resources

  • Submit Content
  • About Us

© 2025 World Wide

Open knowledge for all • Started with World Wide Neuro • A 501(c)(3) Non-Profit Organization

Analytics consent required

World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.

Review the Privacy Policy for details about analytics processing.

World Wide
SeminarsConferencesWorkshopsCoursesJobsMapsFeedLibrary
Back to SeminarsBack
Seminar✓ Recording AvailableNeuroscience

Glassy phase in dynamically balanced networks

Gianluigi Mongillo

CNRS

Schedule
Wednesday, February 17, 2021

Showing your local timezone

Schedule

Tuesday, February 16, 2021

11:00 PM America/New_York

Watch recording
Host: van Vreeswijk TNS

Watch the seminar

Recording provided by the organiser.

Event Information

Domain

Neuroscience

Original Event

View source

Host

van Vreeswijk TNS

Duration

70 minutes

Abstract

We study the dynamics of (inhibitory) balanced networks at varying (i) the level of symmetry in the synaptic connectivity; and (ii) the ariance of the synaptic efficacies (synaptic gain). We find three regimes of activity. For suitably low synaptic gain, regardless of the level of symmetry, there exists a unique stable fixed point. Using a cavity-like approach, we develop a quantitative theory that describes the statistics of the activity in this unique fixed point, and the conditions for its stability. Increasing the synaptic gain, the unique fixed point destabilizes, and the network exhibits chaotic activity for zero or negative levels of symmetry (i.e., random or antisymmetric). Instead, for positive levels of symmetry, there is multi-stability among a large number of marginally stable fixed points. In this regime, ergodicity is broken and the network exhibits non-exponential relaxational dynamics. We discuss the potential relevance of such a “glassy” phase to explain some features of cortical activity.

Topics

balanced networkbalanced networkscavitycavity approachchaoschaotic activitychaotic dynamicscortical activityergodicityfixed pointfixed pointsglassy phaseinhibitory synapsesnon-exponential dynamicssymmetry breakingsynaptic connectivitysynaptic gain

About the Speaker

Gianluigi Mongillo

CNRS

Contact & Resources

Personal Website

www.aging-vision-action.fr/people/gianluigi-mongillo/

Related Seminars

Seminar60%

Pancreatic Opioids Regulate Ingestive and Metabolic Phenotypes

neuro

Jan 12, 2025
Washington University in St. Louis
Seminar60%

Exploration and Exploitation in Human Joint Decisions

neuro

Jan 12, 2025
Munich
Seminar60%

The Role of GPCR Family Mrgprs in Itch, Pain, and Innate Immunity

neuro

Jan 12, 2025
Johns Hopkins University
January 2026
Full calendar →