World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
Dr.
University of Munster
Showing your local timezone
Schedule
Sunday, September 27, 2020
4:00 PM Europe/Lisbon
Seminar location
No geocoded details are available for this content yet.
Recording provided by the organiser.
Format
Recorded Seminar
Recording
Available
Host
Brain-Body Interactions
Seminar location
No geocoded details are available for this content yet.
To function properly, the nervous system consumes vast amounts of energy, which is mostly provided by carbohydrate metabolism. Neurons are very sensitive to changes in the extracellular fluid surrounding them, which necessitated shielding of the nervous system from fluctuating solute concentrations in circulation. This is achieved by the blood-brain barrier (BBB) that prevents paracellular diffusion of solutes into the nervous system. This in turn also means that all nutrients that are needed e.g. for sufficient energy supply need to be transported over the BBB. We use Drosophila as a model system to better understand the metabolic homeostasis in the central nervous system. Glial cells play essential roles in both nutrient uptake and neural energy metabolism. Carbohydrate transport over the glial BBB is well-regulated and can be adapted to changes in carbohydrate availability. Furthermore, Drosophila glial cell are highly glycolytic cells that support the rather oxidative metabolism of neurons. Upon perturbations of carbohydrate metabolism, the glial cells prove to be metabolically very flexible and able to adapt to changing circumstances. I will summarize what we know about carbohydrate transport at the Drosophila BBB and about the metabolic coupling between neurons and glial cells. Our data shows that many basic features of neural metabolism are well conserved between the fly and mammals.
Stephanie Schirmeier
Dr.
University of Munster
Contact & Resources
neuro
neuro
The development of the iPS cell technology has revolutionized our ability to study development and diseases in defined in vitro cell culture systems. The talk will focus on Rett Syndrome and discuss t
neuro
Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzhe