World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
Prof
Emory University School of Medicine
Showing your local timezone
Schedule
Wednesday, January 19, 2022
4:00 PM Europe/London
Seminar location
No geocoded details are available for this content yet.
Recording provided by the organiser.
Format
Recorded Seminar
Recording
Available
Host
Clinical and Experimental Epilepsy
Duration
70.00 minutes
Seminar location
No geocoded details are available for this content yet.
N-methyl-D-aspartate receptors (NMDARs) are excitatory glutamate-gated ion channels that are expressed throughout the central nervous system. NMDARs mediate calcium entry into cells, and are involved in a host of neurological functions. The GluN2A subunit, encoded by the GRIN2A gene, is expressed by both excitatory and inhibitory neurons, with well described roles in pyramidal cells. By using Grin2a knockout mice, we show that the loss of GluN2A signaling impacts parvalbumin-positive (PV) GABAergic interneuron function in hippocampus. Grin2a knockout mice have 33% more PV cells in CA1 compared to wild type but similar cholecystokinin-positive cell density. Immunohistochemistry and electrophysiological recordings show that excess PV cells do eventually incorporate into the hippocampal network and participate in phasic inhibition. Although the morphology of Grin2a knockout PV cells is unaffected, excitability and action-potential firing properties show age-dependent alterations. Preadolescent (P20-25) PV cells have an increased input resistance, longer membrane time constant, longer action-potential half-width, a lower current threshold for depolarization-induced block of action-potential firing, and a decrease in peak action-potential firing rate. Each of these measures are corrected in adulthood, reaching wild type levels, suggesting a potential delay of electrophysiological maturation. The circuit and behavioral implications of this age-dependent PV interneuron malfunction are unknown. However, neonatal Grin2a knockout mice are more susceptible to lipopolysaccharide and febrile-induced seizures, consistent with a critical role for early GluN2A signaling in development and maintenance of excitatory-inhibitory balance. These results could provide insights into how loss-of-function GRIN2A human variants generate an epileptic phenotypes.
Steve Traynelis & Chad Camp
Prof
Emory University School of Medicine
Contact & Resources
neuro
Decades of research on understanding the mechanisms of attentional selection have focused on identifying the units (representations) on which attention operates in order to guide prioritized sensory p
neuro
neuro