World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
Dr.
University of Konstanz
Showing your local timezone
Schedule
Monday, October 24, 2022
4:00 PM Europe/Lisbon
Seminar location
No geocoded details are available for this content yet.
Format
Past Seminar
Recording
Not available
Host
Brain-Body Interactions
Seminar location
No geocoded details are available for this content yet.
It is critical for all animals to make appropriate, but also flexible, foraging decisions, especially when facing starvation. Sensing olfactory information is essential to evaluate food quality before ingestion. Previously, we found that <i>Drosophila</i> larvae switch their response to certain odors from aversion to attraction when food deprived. The neural mechanism underlying this switch in behavior involves serotonergic modulation and reconfiguration of odor processing in the early olfactory sensory system. We now investigate if a change in hunger state also influences other behavioral decisions. Since it had been shown that fly larvae can perform cannibalism, we investigate the effect of food deprivation on feeding on dead conspecifics. We find that fed fly larvae rarely use dead conspecifics as a food source. However, food deprivation largely enhances this behavior. We will now also investigate the underlying neural mechanisms that mediate this enhancement and compare it to the already described mechanism for a switch in olfactory choice behavior. Generally, this flexibility in foraging behavior enables the larva to explore a broader range of stimuli and to expand their feeding choices to overcome starvation.
Katrin Vogt
Dr.
University of Konstanz
neuro
neuro
The development of the iPS cell technology has revolutionized our ability to study development and diseases in defined in vitro cell culture systems. The talk will focus on Rett Syndrome and discuss t
neuro
Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzhe