World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
Dr
University of Cambridge
Showing your local timezone
Schedule
Tuesday, November 9, 2021
5:00 PM Europe/London
Seminar location
No geocoded details are available for this content yet.
Format
Past Seminar
Recording
Not available
Host
CamBRAIN Virtual Journal Club
Seminar location
No geocoded details are available for this content yet.
Activation of pro-degenerative protein SARM1 in response to diverse physical and disease-relevant injuries triggers programmed axon death. Original studies indicated substantially decreased levels of SARM1 were required for neuroprotection. However, we demonstrate that lowering SARM1 levels by 50% in Sarm1 haploinsufficient mice delays axon degeneration in vivo (after sciatic nerve transection), in vitro (in response to diverse traumatic, neurotoxic, and genetic triggers), and partially prevents neurite outgrowth defects in mice lacking pro-survival factor NMNAT2. We also demonstrate the capacity for Sarm1 antisense oligonucleotides to decrease SARM1 levels by more than 50% which delays or prevents programmed axon degeneration in vitro. Combining Sarm1 haploinsufficiency with antisense oligonucleotides further decreases SARM1 levels and prolongs protection after neurotoxic injuries. These data demonstrate that axon protection occurs in a Sarm1 gene-dose responsive manner and that SARM1 lowering agents have therapeutic potential. Thus, antisense oligonucleotide targeting of Sarm1 is a promising therapeutic strategy against diverse triggers of axon degeneration.
Stacey Gould
Dr
University of Cambridge
Contact & Resources
neuro
neuro
The development of the iPS cell technology has revolutionized our ability to study development and diseases in defined in vitro cell culture systems. The talk will focus on Rett Syndrome and discuss t
neuro
Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzhe