World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
Prof
Durham University
Showing your local timezone
Schedule
Wednesday, May 19, 2021
1:00 PM Europe/London
I will begin by describing recent research taking a new, model-based approach to perceptual development. This approach uncovers fundamental changes in information processing underlying the protracted development of perception, action, and decision-making in childhood. For example, integration of multiple sensory estimates via reliability-weighted averaging – widely used by adults to improve perception – is often not seen until surprisingly late into childhood, as assessed by both behaviour and neural representations. This approach forms the basis for a newer question: the scope for the nervous system to deploy useful computations (e.g. reliability-weighted averaging) to optimise perception and action using newly-learned sensory signals provided by technology. Our initial model system is augmenting visual depth perception with devices translating distance into auditory or vibro-tactile signals. This problem has immediate applications to people with partial vision loss, but the broader question concerns our scope to use technology to tune in to any signal not available to our native biological receptors. I will describe initial progress on this problem, and our approach to operationalising what it might mean to adopt a new signal comparably to a native sense. This will include testing for its integration (weighted averaging) alongside the native senses, assessing the level at which this integration happens in the brain, and measuring the degree of ‘automaticity’ with which new signals are used, compared with native perception.
Marko Nardini
Prof
Durham University
Contact & Resources
neuro
neuro
neuro