World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
Showing your local timezone
Schedule
Sunday, December 12, 2021
1:00 PM Europe/Stockholm
Seminar location
No geocoded details are available for this content yet.
Format
Past Seminar
Recording
Not available
Host
Ad hoc
Seminar location
No geocoded details are available for this content yet.
To understand brain function and develop artificial general intelligence it has become abundantly clear that there should be a close interaction among Neuroscience, machine learning and mathematics. There is a general hope that understanding the brain function will provide us with more powerful machine learning algorithms. On the other hand advances in machine learning are now providing the much needed tools to not only analyse brain activity data but also to design better experiments to expose brain function. Both neuroscience and machine learning explicitly or implicitly deal with high dimensional data and systems. Mathematics can provide powerful new tools to understand and quantify the dynamics of biological and artificial systems as they generate behavior that may be perceived as intelligent. In this meeting we bring together experts from Mathematics, Artificial Intelligence and Neuroscience for a three day long hybrid meeting. We will have talks on mathematical tools in particular Topology to understand high dimensional data, explainable AI, how AI can help neuroscience and to what extent the brain may be using algorithms similar to the ones used in modern machine learning. Finally we will wrap up with a discussion on some aspects of neural hardware that may not have been considered in machine learning.
Tim Vogels, Mickey London, Anita Disney, Yonina Eldar, Partha Mitra, Yi Ma
Contact & Resources
neuro
neuro
The development of the iPS cell technology has revolutionized our ability to study development and diseases in defined in vitro cell culture systems. The talk will focus on Rett Syndrome and discuss t
neuro
Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzhe