World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
Vogels Lab, IST Austria
Showing your local timezone
Schedule
Tuesday, February 22, 2022
5:00 PM Europe/Berlin
Seminar location
No geocoded details are available for this content yet.
Recording provided by the organiser.
Format
Recorded Seminar
Recording
Available
Host
WWNeuRise
Seminar location
No geocoded details are available for this content yet.
Conventionally, neurons are thought to be cellular units that process synaptic inputs into synaptic spikes. However, it is well known that neurons can also spike spontaneously and display a rich repertoire of firing properties with no apparent functional relevance e.g. in in vitro cortical slice preparations. In this talk, I will propose a hypothesis according to which intrinsic excitability in neurons may be a survival mechanism to minimize toxic byproducts of the cell’s energy metabolism. In neurons, this toxicity can arise when mitochondrial ATP production stalls due to limited ADP. Under these conditions, electrons deviate from the electron transport chain to produce reactive oxygen species, disrupting many cellular processes and challenging cell survival. To mitigate this, neurons may engage in ADP-producing metabolic spikes. I will explore the validity of this hypothesis using computational models that illustrate the implications of synaptic and metabolic spiking, especially in the context of substantia nigra pars compacta dopaminergic neurons and their degeneration in Parkinson's disease.
Chaitanya Chintaluri
Vogels Lab, IST Austria
neuro
neuro
The development of the iPS cell technology has revolutionized our ability to study development and diseases in defined in vitro cell culture systems. The talk will focus on Rett Syndrome and discuss t
neuro
Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzhe