World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
Assoc Prof
Associate Professor, Institute for Myelin and Glia Exploration, Department of Ph ...
Showing your local timezone
Schedule
Monday, February 7, 2022
4:00 PM America/Montreal
Seminar location
No geocoded details are available for this content yet.
Format
Past Seminar
Recording
Not available
Host
McGill Neuro
Seminar location
No geocoded details are available for this content yet.
The oligodendrocyte generates CNS myelin, which is essential for normal nervous system function. Thus, investigating the regulatory and signaling mechanisms that control its differentiation and the production of myelin is relevant to our understanding of brain development and of adult pathologies such as multiple sclerosis. We have recently established that the activity of voltage-gated Ca++ channels is crucial for the adequate migration, proliferation and maturation of oligodendrocyte progenitor cells (OPCs). Furthermore, we have found that voltage-gated Ca++ channels that function in synaptic communication between neurons also mediate synaptic signaling between neurons and OPCs. Thus, we hypothesize that voltage-gated Ca++ channels are central components of OPC-neuronal synapses and are the principal ion channels mediating activity-dependent myelination.
Pablo Paez, PhD
Assoc Prof
Associate Professor, Institute for Myelin and Glia Exploration, Department of Ph ...
Contact & Resources
neuro
neuro
The development of the iPS cell technology has revolutionized our ability to study development and diseases in defined in vitro cell culture systems. The talk will focus on Rett Syndrome and discuss t
neuro
Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzhe