World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
Columbia University, New York
Showing your local timezone
Schedule
Sunday, November 29, 2020
5:00 PM Europe/Berlin
Seminar location
No geocoded details are available for this content yet.
Recording provided by the organiser.
Format
Recorded Seminar
Recording
Available
Host
BCCN Munich lecture series
Seminar location
No geocoded details are available for this content yet.
A central question in motor physiology has been whether motor cortex activity resembles muscle activity, and if not, why not? Over fifty years, extensive observations have failed to provide a concise answer, and the topic remains much debated. To provide a different perspective, we employed a novel behavioral paradigm that affords extensive comparison between time-evolving neural and muscle activity. Single motor-cortex neurons displayed many muscle-like properties, but the structure of population activity was not muscle-like. Unlike muscle activity, neural activity was structured to avoid ’trajectory tangling’: moments where similar activity patterns led to dissimilar future patterns. Avoidance of trajectory tangling was present across tasks and species. Network models revealed a potential reason for this consistent feature: low tangling confers noise robustness. Remarkably, we were able to predict motor cortex activity from muscle activity alone, by leveraging the hypothesis that muscle-like commands are embedded in additional structure that yields low tangling. Our results argue that motor cortex embeds descending commands in additional structure that ensure low tangling, and thus noise-robustness. The dominant structure in motor cortex may thus serve not a representational function (encoding specific variables) but a computational function: ensuring that outgoing commands can be generated reliably. Our results establish the utility of an emerging approach: understanding the structure of neural activity based on properties of population geometry that flow from normative principles such as noise robustness.
Mark Churchland
Columbia University, New York
neuro
neuro
The development of the iPS cell technology has revolutionized our ability to study development and diseases in defined in vitro cell culture systems. The talk will focus on Rett Syndrome and discuss t
neuro
Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzhe