Platform

  • Search
  • Seminars
  • Conferences
  • Jobs

Resources

  • Submit Content
  • About Us

© 2025 World Wide

Open knowledge for all • Started with World Wide Neuro • A 501(c)(3) Non-Profit Organization

Analytics consent required

World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.

Review the Privacy Policy for details about analytics processing.

World Wide
SeminarsConferencesWorkshopsCoursesJobsMapsFeedLibrary
← Back

Natural Switches Sensory Attention

Back to SeminarsBack
Seminar✓ Recording AvailableNeuroscience

Natural switches in sensory attention rapidly modulate hippocampal spatial codes

Ayelet Sarel

Ulanovsky lab, Weizmann Institute of Science

Schedule
Tuesday, June 1, 2021

Showing your local timezone

Schedule

Tuesday, June 1, 2021

5:00 PM Europe/Berlin

Watch recording
Host: WWNeuRise

Seminar location

Seminar location

Not provided

No geocoded details are available for this content yet.

Watch the seminar

Your browser does not support the video tag.

Recording provided by the organiser.

Event Information

Format

Recorded Seminar

Recording

Available

Host

WWNeuRise

Seminar location

Seminar location

Not provided

No geocoded details are available for this content yet.

World Wide map

Abstract

During natural behavior animals dynamically switch between different behaviors, yet little is known about how the brain performs behavioral-switches. Navigation is a complex dynamic behavior that enables testing these kind of behavioral switches: It requires the animal to know its own allocentric (world-centered) location within the environment, while also paying attention to incoming sudden events such as obstacles or other conspecifics – and therefore the animal may need to rapidly switch from representing its own allocentric position to egocentrically representing ‘things out-there’. Here we used an ethological task where two bats flew together in a very large environment (130 meters), and had to switch between two behaviors: (i) navigation, and (ii) obstacle-avoidance during ‘cross-over’ events with the other bat. Bats increased their echolocation click-rate before a cross-over, indicating spatial attention to the other bat. Hippocampal CA1 neurons represented the bat’s own position when flying alone (allocentric place-coding); surprisingly, when meeting the other bat, neurons switched very rapidly to jointly representing the inter-bat distance × position (egocentric × allocentric coding). This switching to a neuronal representation of the other bat was correlated on a trial-by-trial basis with the attention signal, as indexed by the bat’s echolocation calls – suggesting that sensory attention is controlling these major switches in neural coding. Interestingly, we found that in place-cells, the different place-fields of the same neuron could exhibit very different tuning to inter-bat distance – creating a non-separable coding of allocentric position × egocentric distance. Together, our results suggest that attentional switches during navigation – which in bats can be measured directly based on their echolocation signals – elicit rapid dynamics of hippocampal spatial coding. More broadly, this study demonstrates that during natural behavior, when animals often switch between different behaviors, neural circuits can rapidly and flexibly switch their core computations.

Topics

CA1 neuronsallocentric positionecholocationegocentric representationhippocampal spatial codinginter-bat distancenavigationobstacle-avoidancesensory attention

About the Speaker

Ayelet Sarel

Ulanovsky lab, Weizmann Institute of Science

Contact & Resources

Personal Website

www.researchgate.net/profile/Ayelet-Sarel

@AyeletSarel

Follow on Twitter/X

twitter.com/AyeletSarel

Related Seminars

Seminar64% match - Relevant

Continuous guidance of human goal-directed movements

neuro

Dec 9, 2024
VU University Amsterdam
Seminar64% match - Relevant

Rett syndrome, MECP2 and therapeutic strategies

neuro

The development of the iPS cell technology has revolutionized our ability to study development and diseases in defined in vitro cell culture systems. The talk will focus on Rett Syndrome and discuss t

Dec 10, 2024
Whitehead Institute for Biomedical Research and Department of Biology, MIT, Cambridge, USA
Seminar64% match - Relevant

Genetic and epigenetic underpinnings of neurodegenerative disorders

neuro

Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzhe

Dec 10, 2024
MIT Department of Biology
World Wide calendar

World Wide highlights

December 2025 • Syncing the latest schedule.

View full calendar
Awaiting featured picks
Month at a glance

Upcoming highlights