World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
The Memory & Brain Research Center (MBRC), Baylor College of Medicine, Houston, Texas, USA
Showing your local timezone
Schedule
Thursday, March 18, 2021
6:00 PM Europe/Zurich
Seminar location
No geocoded details are available for this content yet.
Format
Past Seminar
Recording
Not available
Host
NeuroLeman Network
Duration
70.00 minutes
Seminar location
No geocoded details are available for this content yet.
Broadly, the Mauro Costa-Mattioli laboratory (The MCM Lab) encompasses two complementary lines of research. The first one, more traditional but very important, aims at unraveling the molecular mechanisms underlying memory formation (e.g., using state-of-the-art molecular and cell-specific genetic approaches). Learning and memory disorders can strike the brain during development (e.g., Autism Spectrum Disorders and Down Syndrome), as well as during adulthood (e.g., Alzheimer’s disease). We are interested in understanding the specific circuits and molecular pathways that are primarily targeted in these disorders and how they can be restored. To tackle these questions, we use a multidisciplinary, convergent and cross-species approach that combines mouse and fly genetics, molecular biology, electrophysiology, stem cell biology, optogenetics and behavioral techniques. The second line of research, more recent and relatively unexplored, is focused on understanding how gut microbes control CNS driven-behavior and brain function. Our recent discoveries, that microbes in the gut could modulate brain function and behavior in a very powerful way, have added a whole new dimension to the classic view of how complex behaviors are controlled. The unexpected findings have opened new avenues of study for us and are currently driving my lab to answer a host of new and very interesting questions: - What are the gut microbes (and metabolites) that regulate CNS-driven behaviors? Would it be possible to develop an unbiased screening method to identify specific microbes that regulate different behaviors? - If this is the case, can we identify how members of the gut microbiome (and their metabolites) mechanistically influence brain function? - What is the communication channel between the gut microbiota and the brain? Do different gut microbes use different ways to interact with the brain? - Could disruption of the gut microbial ecology cause neurodevelopmental dysfunction? If so, what is the impact of disruption in young and adult animals? - More importantly, could specific restoration of selected bacterial strains (new generation probiotics) represent a novel therapeutic approach for the targeted treatment of neurodevelopmental disorders? - Finally, can we develop microbiota-directed therapeutic foods to repair brain dysfunction in a variety of neurological disorders?
Mauro Costa-Mattioli
The Memory & Brain Research Center (MBRC), Baylor College of Medicine, Houston, Texas, USA
Contact & Resources
neuro
Decades of research on understanding the mechanisms of attentional selection have focused on identifying the units (representations) on which attention operates in order to guide prioritized sensory p
neuro
neuro