Platform

  • Search
  • Seminars
  • Conferences
  • Jobs

Resources

  • Submit Content
  • About Us

© 2025 World Wide

Open knowledge for all • Started with World Wide Neuro • A 501(c)(3) Non-Profit Organization

Analytics consent required

World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.

Review the Privacy Policy for details about analytics processing.

World Wide
SeminarsConferencesWorkshopsCoursesJobsMapsFeedLibrary
← Back

Nmc4 Keynote All Natural

Back to SeminarsBack
Seminar✓ Recording AvailableNeuroscience

NMC4 Keynote: An all-natural deep recurrent neural network architecture for flexible navigation

Vivek Jayaraman

Senior Group Leader

Janelia Research Campus

Schedule
Tuesday, November 30, 2021

Showing your local timezone

Schedule

Tuesday, November 30, 2021

6:00 PM America/New_York

Watch recording
Host: Neuromatch 4

Seminar location

Seminar location

Not provided

No geocoded details are available for this content yet.

Watch the seminar

Your browser does not support the video tag.

Recording provided by the organiser.

Event Information

Format

Recorded Seminar

Recording

Available

Host

Neuromatch 4

Seminar location

Seminar location

Not provided

No geocoded details are available for this content yet.

World Wide map

Abstract

A wide variety of animals and some artificial agents can adapt their behavior to changing cues, contexts, and goals. But what neural network architectures support such behavioral flexibility? Agents with loosely structured network architectures and random connections can be trained over millions of trials to display flexibility in specific tasks, but many animals must adapt and learn with much less experience just to survive. Further, it has been challenging to understand how the structure of trained deep neural networks relates to their functional properties, an important objective for neuroscience. In my talk, I will use a combination of behavioral, physiological and connectomic evidence from the fly to make the case that the built-in modularity and structure of its networks incorporate key aspects of the animal’s ecological niche, enabling rapid flexibility by constraining learning to operate on a restricted parameter set. It is not unlikely that this is also a feature of many biological neural networks across other animals, large and small, and with and without vertebrae.

Topics

behaviourbehavioural flexibilityconnectomic evidenceconnectomicsecological nichelearningmodularitynetwork architectureneural network architecturephysiological evidencephysiologytraining

About the Speaker

Vivek Jayaraman

Senior Group Leader

Janelia Research Campus

Contact & Resources

Personal Website

www.janelia.org/people/vivek-jayaraman

Related Seminars

Seminar64% match - Relevant

Continuous guidance of human goal-directed movements

neuro

Dec 9, 2024
VU University Amsterdam
Seminar64% match - Relevant

Rett syndrome, MECP2 and therapeutic strategies

neuro

The development of the iPS cell technology has revolutionized our ability to study development and diseases in defined in vitro cell culture systems. The talk will focus on Rett Syndrome and discuss t

Dec 10, 2024
Whitehead Institute for Biomedical Research and Department of Biology, MIT, Cambridge, USA
Seminar64% match - Relevant

Genetic and epigenetic underpinnings of neurodegenerative disorders

neuro

Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzhe

Dec 10, 2024
MIT Department of Biology
World Wide calendar

World Wide highlights

December 2025 • Syncing the latest schedule.

View full calendar
Awaiting featured picks
Month at a glance

Upcoming highlights