Platform

  • Search
  • Seminars
  • Conferences
  • Jobs

Resources

  • Submit Content
  • About Us

© 2025 World Wide

Open knowledge for all • Started with World Wide Neuro • A 501(c)(3) Non-Profit Organization

Analytics consent required

World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.

Review the Privacy Policy for details about analytics processing.

World Wide
SeminarsConferencesWorkshopsCoursesJobsMapsFeedLibrary
← Back

Nmc4 Short Talk Mechanism

Back to SeminarsBack
Seminar✓ Recording AvailableNeuroscience

NMC4 Short Talk: A mechanism for inter-areal coherence through communication based on connectivity and oscillatory power

Marius Schneider

Graduate Student

Ernst Strüngmann Institute for Neuroscience

Schedule
Wednesday, December 1, 2021

Showing your local timezone

Schedule

Wednesday, December 1, 2021

3:15 AM America/New_York

Watch recording
Host: Neuromatch 4

Seminar location

Seminar location

Not provided

No geocoded details are available for this content yet.

Watch the seminar

Your browser does not support the video tag.

Recording provided by the organiser.

Event Information

Format

Recorded Seminar

Recording

Available

Host

Neuromatch 4

Duration

15.00 minutes

Seminar location

Seminar location

Not provided

No geocoded details are available for this content yet.

World Wide map

Abstract

Inter-areal coherence between cortical field-potentials is a widespread phenomenon and depends on numerous behavioral and cognitive factors. It has been hypothesized that inter-areal coherence reflects phase-synchronization between local oscillations and flexibly gates communication. We reveal an alternative mechanism, where coherence results from and is not the cause of communication, and naturally emerges as a consequence of the fact that spiking activity in a sending area causes post-synaptic inputs both in the same area and in other areas. Consequently, coherence depends in a lawful manner on oscillatory power and phase-locking in a sending area and inter-areal connectivity. We show that changes in oscillatory power explain prominent changes in fronto-parietal beta-coherence with movement and memory, and LGN-V1 gamma-coherence with arousal and visual stimulation. Optogenetic silencing of a receiving area and E/I network simulations demonstrate that afferent synaptic inputs rather than spiking entrainment are the main determinant of inter-areal coherence. These findings suggest that the unique spectral profiles of different brain areas automatically give rise to large-scale inter-areal coherence patterns that follow anatomical connectivity and continuously reconfigure as a function of behavior and cognition.

Topics

beta-coherenceconnectivitycortical field-potentialsgamma-coherenceinter-areal coherencelocal oscillationsoptogenetic silencingoscillatory powerphase-synchronizationspiking activity

About the Speaker

Marius Schneider

Graduate Student

Ernst Strüngmann Institute for Neuroscience

Contact & Resources

Personal Website

www.esi-frankfurt.de/people/mariusschneider/

@Mars_Schneider

Follow on Twitter/X

twitter.com/Mars_Schneider

Related Seminars

Seminar64% match - Relevant

Rethinking Attention: Dynamic Prioritization

neuro

Decades of research on understanding the mechanisms of attentional selection have focused on identifying the units (representations) on which attention operates in order to guide prioritized sensory p

Jan 6, 2025
George Washington University
Seminar64% match - Relevant

The Cognitive Roots of the Problem of Free Will

neuro

Jan 7, 2025
Bielefeld & Amsterdam
Seminar64% match - Relevant

Memory Colloquium Lecture

neuro

Jan 8, 2025
Keio University, Tokyo
World Wide calendar

World Wide highlights

December 2025 • Syncing the latest schedule.

View full calendar
Awaiting featured picks
Month at a glance

Upcoming highlights