World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
Fiete lab, MIT
Showing your local timezone
Schedule
Tuesday, November 1, 2022
5:35 PM Europe/Berlin
Seminar location
No geocoded details are available for this content yet.
Recording provided by the organiser.
Format
Recorded Seminar
Recording
Available
Host
WWNeuRise
Seminar location
No geocoded details are available for this content yet.
Research in Neuroscience, as in many scientific disciplines, is undergoing a renaissance based on deep learning. Unique to Neuroscience, deep learning models can be used not only as a tool but interpreted as models of the brain. The central claims of recent deep learning-based models of brain circuits are that they shed light on fundamental functions being optimized or make novel predictions about neural phenomena. We show, through the case-study of grid cells in the entorhinal-hippocampal circuit, that one may get neither. We rigorously examine the claims of deep learning models of grid cells using large-scale hyperparameter sweeps and theory-driven experimentation, and demonstrate that the results of such models are more strongly driven by particular, non-fundamental, and post-hoc implementation choices than fundamental truths about neural circuits or the loss function(s) they might optimize. We discuss why these models cannot be expected to produce accurate models of the brain without the addition of substantial amounts of inductive bias, an informal No Free Lunch result for Neuroscience.
Rylan Schaeffer
Fiete lab, MIT
neuro
neuro
The development of the iPS cell technology has revolutionized our ability to study development and diseases in defined in vitro cell culture systems. The talk will focus on Rett Syndrome and discuss t
neuro
Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzhe