World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
Humboldt University Berlin
Showing your local timezone
Schedule
Wednesday, November 17, 2021
12:00 AM America/New_York
Seminar location
No geocoded details are available for this content yet.
Recording provided by the organiser.
Format
Recorded Seminar
Recording
Available
Host
van Vreeswijk TNS
Duration
70.00 minutes
Seminar location
No geocoded details are available for this content yet.
Neuronal dendritic trees display a wide range of nonlinear input integrations due to their voltage-dependent active calcium channels. We reveal that in vivo-like fluctuating input enhances nonlinearity substantially in a single dendritic compartment and shifts the input-output relation to exhibiting nonmonotonous or bistable dynamics. In particular, with the slow activation of calcium dynamics, we analyze noise-induced bistability and its timescales. We show bistability induces long-timescale fluctuation that can account for observed dendritic plateau potentials in vivo conditions. In a multicompartmental model neuron with realistic synaptic input, we show that noise-induced bistability persists in a wide range of parameters. Using Fredholm's theory to calculate the spiking rate of multivariable neurons, we discuss how dendritic bistability shifts the spiking dynamics of single neurons and its implications for network phenomena in the processing of in vivo–like fluctuating input.
Farzada Farkhooi
Humboldt University Berlin
Contact & Resources
neuro
Decades of research on understanding the mechanisms of attentional selection have focused on identifying the units (representations) on which attention operates in order to guide prioritized sensory p
neuro
neuro