We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.
Non-invasive human neuroimaging studies of motor plasticity have predominantly focused on the cerebral cortex due to low signal-to-noise ration of blood oxygen level-dependent (BOLD) signals in subcortical structures and the small effect sizes typically observed in plasticity paradigms. Precision functional mapping can help overcome these challenges and has revealed significant and reversible functional alterations in the cortico-subcortical motor circuit during arm immobilization - World Wide