Platform

  • Search
  • Seminars
  • Conferences
  • Jobs

Resources

  • Submit Content
  • About Us

© 2025 World Wide

Open knowledge for all • Started with World Wide Neuro • A 501(c)(3) Non-Profit Organization

Analytics consent required

World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.

Review the Privacy Policy for details about analytics processing.

World Wide
SeminarsConferencesWorkshopsCoursesJobsMapsFeedLibrary
Back to SeminarsBack
Seminar✓ Recording AvailableNeuroscience

Norse: A library for gradient-based learning in Spiking Neural Networks

Jens Egholm Pedersen

PhDc

KTH Royal Institute of Technology

Schedule
Wednesday, November 3, 2021

Showing your local timezone

Schedule

Wednesday, November 3, 2021

5:35 PM Europe/Berlin

Watch recording
Host: SNUFA

Watch the seminar

Recording provided by the organiser.

Event Information

Domain

Neuroscience

Original Event

View source

Host

SNUFA

Duration

70 minutes

Abstract

We introduce Norse: An open-source library for gradient-based training of spiking neural networks. In contrast to neuron simulators which mainly target computational neuroscientists, our library seamlessly integrates with the existing PyTorch ecosystem using abstractions familiar to the machine learning community. This has immediate benefits in that it provides a familiar interface, hardware accelerator support and, most importantly, the ability to use gradient-based optimization. While many parallel efforts in this direction exist, Norse emphasizes flexibility and usability in three ways. Users can conveniently specify feed-forward (convolutional) architectures, as well as arbitrarily connected recurrent networks. We strictly adhere to a functional and class-based API such that neuron primitives and, for example, plasticity rules composes. Finally, the functional core API ensures compatibility with the PyTorch JIT and ONNX infrastructure. We have made progress to support network execution on the SpiNNaker platform and plan to support other neuromorphic architectures in the future. While the library is useful in its present state, it also has limitations we will address in ongoing work. In particular, we aim to implement event-based gradient computation, using the EventProp algorithm, which will allow us to support sparse event-based data efficiently, as well as work towards support of more complex neuron models. With this library, we hope to contribute to a joint future of computational neuroscience and neuromorphic computing.

Topics

EventPropPyTorchSpiNNakerconvolutional architecturesfeed-forward networksgradient-based learningneuromorphic computingnorseplasticityplasticity rulesrecurrent networksspiking neural networks

About the Speaker

Jens Egholm Pedersen

PhDc

KTH Royal Institute of Technology

Contact & Resources

Personal Website

www.kth.se/profile/jeped

@jensegholm

Follow on Twitter/X

twitter.com/jensegholm

Related Seminars

Seminar60%

Pancreatic Opioids Regulate Ingestive and Metabolic Phenotypes

neuro

Jan 12, 2025
Washington University in St. Louis
Seminar60%

Exploration and Exploitation in Human Joint Decisions

neuro

Jan 12, 2025
Munich
Seminar60%

The Role of GPCR Family Mrgprs in Itch, Pain, and Innate Immunity

neuro

Jan 12, 2025
Johns Hopkins University
January 2026
Full calendar →