Platform

  • Search
  • Seminars
  • Conferences
  • Jobs

Resources

  • Submit Content
  • About Us

© 2025 World Wide

Open knowledge for all • Started with World Wide Neuro • A 501(c)(3) Non-Profit Organization

Analytics consent required

World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.

Review the Privacy Policy for details about analytics processing.

World Wide
SeminarsConferencesWorkshopsCoursesJobsMapsFeedLibrary
Back to SeminarsBack
Seminar✓ Recording AvailablePhysics of Life

Odd dynamics of living chiral crystals

Alexander Mietke

Dr.

MIT

Schedule
Sunday, August 14, 2022

Showing your local timezone

Schedule

Sunday, August 14, 2022

4:00 PM America/Los_Angeles

Watch recording
Host: SLAAM by UC Merced

Access Seminar

Meeting Password

223642

Use this password when joining the live session

Watch the seminar

Your browser does not support the video tag.

Recording provided by the organiser.

Event Information

Domain

Physics of Life

Original Event

View source

Host

SLAAM by UC Merced

Duration

70 minutes

Abstract

The emergent dynamics exhibited by collections of living organisms often shows signatures of symmetries that are broken at the single-organism level. At the same time, organism development itself encompasses a well-coordinated sequence of symmetry breaking events that successively transform a single, nearly isotropic cell into an animal with well-defined body axis and various anatomical asymmetries. Combining these key aspects of collective phenomena and embryonic development, we describe here the spontaneous formation of hydrodynamically stabilized active crystals made of hundreds of starfish embryos that gather during early development near fluid surfaces. We describe a minimal hydrodynamic theory that is fully parameterized by experimental measurements of microscopic interactions among embryos. Using this theory, we can quantitatively describe the stability, formation and rotation of crystals and rationalize the emergence of mechanical properties that carry signatures of an odd elastic material. Our work thereby quantitatively connects developmental symmetry breaking events on the single-embryo level with remarkable macroscopic material properties of a novel living chiral crystal system.

Topics

active crystalschiral crystalsembryonic developmentfluid surfaceshydrodynamic theoryisotropic cellmechanical propertiesstarfish embryossymmetry breaking

About the Speaker

Alexander Mietke

Dr.

MIT

Contact & Resources

No additional contact information available

Related Seminars

Seminar60%

Pancreatic Opioids Regulate Ingestive and Metabolic Phenotypes

neuro

Jan 12, 2025
Washington University in St. Louis
Seminar60%

The Role of GPCR Family Mrgprs in Itch, Pain, and Innate Immunity

neuro

Jan 12, 2025
Johns Hopkins University
Seminar60%

Exploration and Exploitation in Human Joint Decisions

neuro

Jan 12, 2025
Munich
January 2026
Full calendar →