World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
University of Helsinki / University of Education Schwyz
Showing your local timezone
Schedule
Wednesday, February 10, 2021
5:00 PM Europe/London
Seminar location
No geocoded details are available for this content yet.
Recording provided by the organiser.
Format
Recorded Seminar
Recording
Available
Host
Analogical Minds
Seminar location
No geocoded details are available for this content yet.
According to the concreteness fading approach, instruction should start with concrete representations and progress stepwise to representations that are more idealized. Various researchers have suggested that concreteness fading is a broadly applicable instructional approach. In this talk, we conceptually analyze examples of concreteness fading in mathematics and various science domains. In this analysis, we draw on theories of analogical and relational reasoning and on the literature about learning with multiple representations. Furthermore, we report on an experimental study in which we employed concreteness fading in advanced physics education. The results of the conceptual analysis and the experimental study indicate that concreteness fading may not be as generalizable as has been suggested. The reasons for this limited generalizability are twofold. First, the types of representations and the relations between them differ across different domains. Second, the instructional goals between domains and the subsequent roles of the representations vary.
Dr Tommi Kokkonen / Prof Lennart Schalk
University of Helsinki / University of Education Schwyz
Contact & Resources
neuro
neuro
The development of the iPS cell technology has revolutionized our ability to study development and diseases in defined in vitro cell culture systems. The talk will focus on Rett Syndrome and discuss t
neuro
Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzhe