Cookies
We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.
Prof.
National Autonomous University of Mexico
Showing your local timezone
Schedule
Tuesday, November 22, 2022
11:00 PM America/New_York
Recording provided by the organiser.
Domain
Host
Timing Research Forum
Duration
70 minutes
We recorded and analyzed the population activity of hundreds of neurons in the medial premotor areas (MPC) of rhesus monkeys performing an isochronous tapping task guided by brief flashing stimuli or auditory tones. The animals showed a strong bias towards visual metronomes, with rhythmic tapping that was more precise and accurate than for auditory metronomes. The population dynamics in state space as well as the corresponding neural sequences shared the following properties across modalities: the circular dynamics of the neural trajectories and the neural sequences formed a regenerating loop for every produced interval, producing a relative time representation; the trajectories converged in similar state space at tapping times while the moving bumps restart at this point, resetting the beat-based clock; the tempo of the synchronized tapping was encoded by a combination of amplitude modulation and temporal scaling in the neural trajectories. In addition, the modality induced a displacement in the neural trajectories in auditory and visual subspaces without greatly altering time keeping mechanism. These results suggest that the interaction between the amodal internal representation of pulse within MPC and a modality specific external input generates a neural rhythmic clock whose dynamics define the temporal execution of tapping using auditory and visual metronomes.
Hugo Merchant
Prof.
National Autonomous University of Mexico
neuro
Digital Minds: Brain Development in the Age of Technology examines how our increasingly connected world shapes mental and cognitive health. From screen time and social media to virtual interactions, t
neuro
neuro
Alpha synuclein and Lrrk2 are key players in Parkinson's disease and related disorders, but their normal role has been confusing and controversial. Data from acute gene-editing based knockdown, follow