Platform

  • Search
  • Seminars
  • Conferences
  • Jobs

Resources

  • Submit Content
  • About Us

© 2025 World Wide

Open knowledge for all • Started with World Wide Neuro • A 501(c)(3) Non-Profit Organization

Analytics consent required

World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.

Review the Privacy Policy for details about analytics processing.

World Wide
SeminarsConferencesWorkshopsCoursesJobsMapsFeedLibrary
Back to SeminarsBack
SeminarPast EventNeuroscience

Sleep deprivation and the human brain: from brain physiology to cognition”

Ali Salehinejad

Leibniz Research Centre for Working Environment & Human Factors, Dortmund, Germany

Schedule
Tuesday, August 29, 2023

Showing your local timezone

Schedule

Tuesday, August 29, 2023

2:15 PM Europe/Zurich

Host: NeuroLeman Network

Access Seminar

Meeting Password

617330

Use this password when joining the live session

Event Information

Domain

Neuroscience

Original Event

View source

Host

NeuroLeman Network

Duration

70 minutes

Abstract

Sleep strongly affects synaptic strength, making it critical for cognition, especially learning and memory formation. Whether and how sleep deprivation modulates human brain physiology and cognition is poorly understood. Here we examined how overnight sleep deprivation vs overnight sufficient sleep affects (a) cortical excitability, measured by transcranial magnetic stimulation, (b) inducibility of long-term potentiation (LTP)- and long-term depression (LTD)-like plasticity via transcranial direct current stimulation (tDCS), and (c) learning, memory, and attention. We found that sleep deprivation increases cortical excitability due to enhanced glutamate-related cortical facilitation and decreases and/or reverses GABAergic cortical inhibition. Furthermore, tDCS-induced LTP-like plasticity (anodal) abolishes while the inhibitory LTD-like plasticity (cathodal) converts to excitatory LTP-like plasticity under sleep deprivation. This is associated with increased EEG theta oscillations due to sleep pressure. Motor learning, behavioral counterparts of plasticity, and working memory and attention, which rely on cortical excitability, are also impaired during sleep deprivation. Our study indicates that upscaled brain excitability and altered plasticity, due to sleep deprivation, are associated with impaired cognitive performance. Besides showing how brain physiology and cognition undergo changes (from neurophysiology to higher-order cognition) under sleep pressure, the findings have implications for variability and optimal application of noninvasive brain stimulation.

Topics

B&C Tuesday SeminarEEG theta oscillationsGABAcortical excitabilityglutamatelong-term depressionlong-term potentiationsleep deprivationtranscranial magnetic stimulation

About the Speaker

Ali Salehinejad

Leibniz Research Centre for Working Environment & Human Factors, Dortmund, Germany

Contact & Resources

No additional contact information available

Related Seminars

Seminar60%

Mouse Motor Cortex Circuits and Roles in Oromanual Behavior

neuro

I’m interested in structure-function relationships in neural circuits and behavior, with a focus on motor and somatosensory areas of the mouse’s cortex involved in controlling forelimb movements. In o

Jan 13, 2025
Northwestern University
Seminar60%

TBD

neuro

Jan 20, 2025
King's College London
Seminar60%

Guiding Visual Attention in Dynamic Scenes

neuro

Jan 20, 2025
Haifa U
January 2026
Full calendar →