World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
Dr
University of Washington
Showing your local timezone
Schedule
Wednesday, December 9, 2020
5:00 PM Europe/London
Seminar location
No geocoded details are available for this content yet.
Recording provided by the organiser.
Format
Recorded Seminar
Recording
Available
Host
Analogical Minds
Seminar location
No geocoded details are available for this content yet.
People from cultures around the world tend to borrow from the domain of space to represent abstract concepts. For example, in the domain on time, we use spatial metaphors (e.g., describing the future as being in front and the past behind), accompany our speech with spatial gestures (e.g., gesturing to the left to refer to a past event), and use external tools that project time onto a spatial reference frame (e.g., calendars). Importantly, these associations are also present in the way we think and reason about time, suggesting that space and time are also linked in the mind. In this talk, I will explore the developmental origins and functional implications of these types of cross-dimensional associations. To start, I will discuss the roles that language and culture play in shaping how children in the US and India represent time. Next, I will use word learning and memory as test cases for exploring why cross-dimensional associations may be cognitively advantageous. Finally, I will talk about future directions and the practical implications for this line of work, with a focus on how encouraging spatial representations of abstract concepts could improve learning outcomes.
Ariel Starr
Dr
University of Washington
neuro
neuro
The development of the iPS cell technology has revolutionized our ability to study development and diseases in defined in vitro cell culture systems. The talk will focus on Rett Syndrome and discuss t
neuro
Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzhe