Platform

  • Search
  • Seminars
  • Conferences
  • Jobs

Resources

  • Submit Content
  • About Us

© 2025 World Wide

Open knowledge for all • Started with World Wide Neuro • A 501(c)(3) Non-Profit Organization

Analytics consent required

World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.

Review the Privacy Policy for details about analytics processing.

World Wide
SeminarsConferencesWorkshopsCoursesJobsMapsFeedLibrary
← Back

Stereospike Depth Learning Spiking

Back to SeminarsBack
Seminar✓ Recording AvailableNeuroscience

StereoSpike: Depth Learning with a Spiking Neural Network

Ulysse Rancon

PhDc

University of Bordeaux

Schedule
Monday, November 1, 2021

Showing your local timezone

Schedule

Monday, November 1, 2021

3:15 PM Europe/Berlin

Watch recording
Host: SNUFA

Seminar location

Seminar location

Not provided

No geocoded details are available for this content yet.

Watch the seminar

Recording provided by the organiser.

Event Information

Format

Recorded Seminar

Recording

Available

Host

SNUFA

Seminar location

Seminar location

Not provided

No geocoded details are available for this content yet.

World Wide map

Abstract

Depth estimation is an important computer vision task, useful in particular for navigation in autonomous vehicles, or for object manipulation in robotics. Here we solved it using an end-to-end neuromorphic approach, combining two event-based cameras and a Spiking Neural Network (SNN) with a slightly modified U-Net-like encoder-decoder architecture, that we named StereoSpike. More specifically, we used the Multi Vehicle Stereo Event Camera Dataset (MVSEC). It provides a depth ground-truth, which was used to train StereoSpike in a supervised manner, using surrogate gradient descent. We propose a novel readout paradigm to obtain a dense analog prediction –the depth of each pixel– from the spikes of the decoder. We demonstrate that this architecture generalizes very well, even better than its non-spiking counterparts, leading to state-of-the-art test accuracy. To the best of our knowledge, it is the first time that such a large-scale regression problem is solved by a fully spiking network. Finally, we show that low firing rates (<10%) can be obtained via regularization, with a minimal cost in accuracy. This means that StereoSpike could be implemented efficiently on neuromorphic chips, opening the door for low power real time embedded systems.

Topics

StereoSpikeU-Netanalog predictiondeep learningdepth estimationevent-based cameraslow firing ratesspiking neural networkspiking neural networkssurrogate gradient descent

About the Speaker

Ulysse Rancon

PhDc

University of Bordeaux

Contact & Resources

Personal Website

fr.linkedin.com/in/urancon/en

@dodo_47_

Follow on Twitter/X

twitter.com/dodo_47_

Related Seminars

Seminar64% match - Relevant

Continuous guidance of human goal-directed movements

neuro

Dec 9, 2024
VU University Amsterdam
Seminar64% match - Relevant

Rett syndrome, MECP2 and therapeutic strategies

neuro

The development of the iPS cell technology has revolutionized our ability to study development and diseases in defined in vitro cell culture systems. The talk will focus on Rett Syndrome and discuss t

Dec 10, 2024
Whitehead Institute for Biomedical Research and Department of Biology, MIT, Cambridge, USA
Seminar64% match - Relevant

Genetic and epigenetic underpinnings of neurodegenerative disorders

neuro

Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzhe

Dec 10, 2024
MIT Department of Biology
World Wide calendar

World Wide highlights

December 2025 • Syncing the latest schedule.

View full calendar
Awaiting featured picks
Month at a glance

Upcoming highlights