World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
Flatiron Institute/NYU
Showing your local timezone
Schedule
Wednesday, January 26, 2022
12:00 AM America/New_York
Seminar location
No geocoded details are available for this content yet.
Recording provided by the organiser.
Format
Recorded Seminar
Recording
Available
Host
van Vreeswijk TNS
Duration
70.00 minutes
Seminar location
No geocoded details are available for this content yet.
A central goal in neuroscience is to understand how orchestrated computations in the brain arise from the properties of single neurons and networks of such neurons. Answering this question requires theoretical advances that shine light into the ‘black box’ of neuronal networks. In this talk, I will demonstrate theoretical approaches that help describe how cognitive and behavioral task implementations emerge from structure in neural populations and from biologically plausible learning rules. First, I will introduce an analytic theory that connects geometric structures that arise from neural responses (i.e., neural manifolds) to the neural population’s efficiency in implementing a task. In particular, this theory describes how easy or hard it is to discriminate between object categories based on the underlying neural manifolds’ structural properties. Next, I will describe how such methods can, in fact, open the ‘black box’ of neuronal networks, by showing how we can understand a) the role of network motifs in task implementation in neural networks and b) the role of neural noise in adversarial robustness in vision and audition. Finally, I will discuss my recent efforts to develop biologically plausible learning rules for neuronal networks, inspired by recent experimental findings in synaptic plasticity. By extending our mathematical toolkit for analyzing representations and learning rules underlying complex neuronal networks, I hope to contribute toward the long-term challenge of understanding the neuronal basis of behaviors.
SueYeon Chung
Flatiron Institute/NYU
Contact & Resources
neuro
Decades of research on understanding the mechanisms of attentional selection have focused on identifying the units (representations) on which attention operates in order to guide prioritized sensory p
neuro
neuro