Platform

  • Search
  • Seminars
  • Conferences
  • Jobs

Resources

  • Submit Content
  • About Us

© 2025 World Wide

Open knowledge for all • Started with World Wide Neuro • A 501(c)(3) Non-Profit Organization

Analytics consent required

World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.

Review the Privacy Policy for details about analytics processing.

World Wide
SeminarsConferencesWorkshopsCoursesJobsMapsFeedLibrary
← Back

Structure Function Learning Distributed

Back to SeminarsBack
Seminar✓ Recording AvailableNeuroscience

Structure, Function, and Learning in Distributed Neuronal Networks

SueYeon Chung

Flatiron Institute/NYU

Schedule
Tuesday, January 25, 2022

Showing your local timezone

Schedule

Tuesday, January 25, 2022

11:00 AM America/New_York

Watch recording
Host: van Vreeswijk TNS

Seminar location

Seminar location

Not provided

No geocoded details are available for this content yet.

Watch the seminar

Recording provided by the organiser.

Event Information

Format

Recorded Seminar

Recording

Available

Host

van Vreeswijk TNS

Seminar location

Seminar location

Not provided

No geocoded details are available for this content yet.

World Wide map

Abstract

A central goal in neuroscience is to understand how orchestrated computations in the brain arise from the properties of single neurons and networks of such neurons. Answering this question requires theoretical advances that shine light into the ‘black box’ of neuronal networks. In this talk, I will demonstrate theoretical approaches that help describe how cognitive and behavioral task implementations emerge from structure in neural populations and from biologically plausible learning rules. First, I will introduce an analytic theory that connects geometric structures that arise from neural responses (i.e., neural manifolds) to the neural population’s efficiency in implementing a task. In particular, this theory describes how easy or hard it is to discriminate between object categories based on the underlying neural manifolds’ structural properties. Next, I will describe how such methods can, in fact, open the ‘black box’ of neuronal networks, by showing how we can understand a) the role of network motifs in task implementation in neural networks and b) the role of neural noise in adversarial robustness in vision and audition. Finally, I will discuss my recent efforts to develop biologically plausible learning rules for neuronal networks, inspired by recent experimental findings in synaptic plasticity. By extending our mathematical toolkit for analyzing representations and learning rules underlying complex neuronal networks, I hope to contribute toward the long-term challenge of understanding the neuronal basis of behaviors.

Topics

adversarial robustnessbehavioural implementationcognitionlearning rulesnetwork motifsneural manifoldsneural populationneuronal networkssynaptic plasticity

About the Speaker

SueYeon Chung

Flatiron Institute/NYU

Contact & Resources

Personal Website

as.nyu.edu/faculty/sueyeon-chung.html

Related Seminars

Seminar64% match - Relevant

Continuous guidance of human goal-directed movements

neuro

Dec 9, 2024
VU University Amsterdam
Seminar64% match - Relevant

Rett syndrome, MECP2 and therapeutic strategies

neuro

The development of the iPS cell technology has revolutionized our ability to study development and diseases in defined in vitro cell culture systems. The talk will focus on Rett Syndrome and discuss t

Dec 10, 2024
Whitehead Institute for Biomedical Research and Department of Biology, MIT, Cambridge, USA
Seminar64% match - Relevant

Genetic and epigenetic underpinnings of neurodegenerative disorders

neuro

Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzhe

Dec 10, 2024
MIT Department of Biology
World Wide calendar

World Wide highlights

December 2025 • Syncing the latest schedule.

View full calendar
Awaiting featured picks
Month at a glance

Upcoming highlights