World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
Prof
Brown University
Showing your local timezone
Schedule
Tuesday, September 1, 2020
4:00 PM Europe/London
Seminar location
No geocoded details are available for this content yet.
Recording provided by the organiser.
Format
Recorded Seminar
Recording
Available
Host
BioActive Fluids
Seminar location
No geocoded details are available for this content yet.
The effect of non Newtonian liquid rheology on the swimming performance of microorganisms is still poorly understood, despite numerous recent studies. In our effort to clarify some aspects of this problem, we have developed a series of magnetic synthetic swimmers that self-propel immersed in a fluid by emulating the swimming strategy of flagellated microorganisms. With these devices, it is possible to control some aspects of the motion with the objective to isolate specific effects. In this talk, recent results on the effects of shear-thinning viscosity and viscoelasticity on the motion of helical swimmers will presented and discussed. Also, a number of other new uses of the synthetic swimmers will be presented including swimming across gradients, swimming in sand, interactions and rheometry.
Roberto Zenit
Prof
Brown University
Contact & Resources
open source
When meta-research (research on research) makes an observation or points out a problem (such as a flaw in methodology), the project should be repeated later to determine whether the problem remains. F
neuro
neuro
Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzhe